2017-08-23 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 06 , Vol. 15 , 2017    10.3788/COL201715.060101


Performance of a PPM hard decision-based ARQ-FSO system in a weak turbulence channel
Jianjun Yin, Hongzhan Liu, Rong Huang, Zhengguang Gao, and Zhongchao Wei
Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, [South China Normal University], Guangzhou 510006, China

Chin. Opt. Lett., 2017, 15(06): pp.060101

DOI:10.3788/COL201715.060101
Topic:Atmospheric optics and oceanic optics
Keywords(OCIS Code): 010.1300  010.1330  060.2605  

Abstract
We present an automatic repeat request (ARQ) free space optical (FSO) system, which consists of a pulse position modulation (PPM) hard decision and an ARQ. The new ARQ’s data error detection is based on a PPM hard decision’s results and can eliminate the traditional ARQ information redundancy. The results of the numerical simulation have a good agreement with theoretical analysis and show that the ARQ-FSO system can effectively improve the bit error rate (BER) performance of the direct hard decision PPM system. Additionally, the proposed system significantly improves the average throughput efficiency compared to traditional ARQ systems. These characteristics make the ARQ-FSO system suitable for application in low BER and complexity FSO scenarios.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (907 KB)

Share:


Received:2016/10/8
Accepted:2017/2/24
Posted online:2017/3/16

Get Citation: Jianjun Yin, Hongzhan Liu, Rong Huang, Zhengguang Gao, and Zhongchao Wei, "Performance of a PPM hard decision-based ARQ-FSO system in a weak turbulence channel," Chin. Opt. Lett. 15(06), 060101(2017)

Note: This work was supported by the National Natural Science Foundation of China (No. 61475049) and the National Basic Research Program of China (No. 2013CB29204).



References

1. M. A. Khalighi, and M. Uysal, IEEE Commun. Surv. Tut. 16, 2231 (2014).

2. T. Cao, P. Wang, L. Guo, B. Yang, J. Li, and Y. Yang, Chin. Opt. Lett. 13, 080101 (2015).

3. M. Abaza, R. Mesleh, A. Mansour, and E. Aggoune, Chin. Opt. Lett. 13, 051001 (2015).

4. X. M. Zhu, and J. M. Kahn, IEEE. Trans. Commun. 50, 1293 (2002).

5. P. Wang, J. Qin, L. Guo, and Y. Yang, IEEE. Photon. Technol. Lett. 28, 252 (2016).

6. K. Kiasaleh, IEEE. Trans. Commun. 53, 1455 (2005).

7. Z. Ghassemlooy, W. Popoola, and S. Rajbhandari, Optical Wireless Communications: System and Channel Modelling with MATLAB (CRC Press, 2012).

8. S. Karp, and R. M. Gagliardi, IEEE. Trans. Commun. Technol. 17, 670 (1969).

9. S. B. Baiguanysh, A. B. Mirmanov, A. S. Alimbaev, and A. Y. Makartseva, in 2015 International Siberian Conference on Control and Communications (2015), p.?4.

10. X. Fu, G. Chen, T. Tang, Y. Zhao, P. Wang, and Y. Zhang, in 2010 Symposium on Photonics and Optoelectronics (2010), p.?1.

11. A. J. Mendez, V. J. Hernandez, R. M. Gagliardi, and C. V. Bennett, in 2009 IEEE Leos Annual Meeting Conference Proceedings , Vols.?1 and 2 (2009).

12. S. M. Aghajanzadeh, and M. Uysal, IEEE. Trans. Commun. 60, 1432 (2012).

13. E. Zedini, A. Chelli, and M. S. Alouini, IEEE. Photon. J. 6, 1 (2014).

14. S. Parthasarathy, A. Kirstaedter, and D. Giggenbach, in Photonic Networks; 17. ITG-Symposium (2016), p.?1.

15. A. R. Hammons, and F. Davidson, in Military Communications Conference (2010), p.?808.

16. G. Prakash, A. Nayak, M. Kulkarni, and S. Acharya, in 2013 IEEE 16th International Conference on Computational Science and Engineering (2013), p.?1195.

17. V. V. Mai, and A. T. Pham, IEEE. Photon. J. 8, 1 (2016).

18. T. Ozugur, M. Naghshineh, P. Kermani, C. M. Olsen, B. Rezvani, and J. A. Copeland, in 1998 The Ninth IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (1998), p.?698.

19. T. Ozugur, M. Naghshineh, P. Kermani, and J. A. Copeland, Int. J. Commun. Syst. 13, 617 (2000).

20. K. Samaras, D. C. O’Brien, and D. J. Edwards, Electron. Lett. 34, 2199 (1998).

21. K. Kiasaleh, IEEE. Commun. Lett. 14, 866 (2010).

22. Y. Y. Zhang, H. Y. Yu, J. K. Zhang, and Y. J. Zhu, Opt. Express 24, 7905 (2016).

23. C. Liu, Y. Yao, Y. Sun, and X. Zhao, Chin. Opt. Lett. 8, 537 (2010).

24. J. Li, and M. Uysal, in 2003 IEEE 58th Vehicular Technology Conference (2003), p.?168.

25. H. G. Sandalidis, and T. A. Tsiftsis, Electron. Lett. 44, 46 (2008).

26. J. R. Barry, Wireless Infrared Communications (Kluwer Academic, 1994).

27. D. B. Owen, Technometrics 7, 78 (1965).

28. J. G. Proakis, and M. Salehi, Digital Communications (McGraw-Hill, 2008).

29. S. Lin, D. J. Costello, and M. J. Miller, IEEE. Commun. Mag. 22, 5 (1984).


Save this article's abstract as
Copyright©2014 Chinese Optics Letters 沪ICP备05015387