2018-07-24 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 01 , Vol. 15 , 2017    10.3788/COL201715.010007


Photonic generation of background-free millimeter-wave ultra-wideband signals (Invited Paper)
Wei Li1;2, Ming Li1;2, and Ninghua Zhu1;2
1 State Key Laboratory on Integrated Optoelectronics, [Institute of Semiconductors], Chinese Academy of Sciences, Beijing 1 00083, China
2 [University of Chinese Academy of Sciences], Beijing 100049, China

Chin. Opt. Lett., 2017, 15(01): pp.010007

DOI:10.3788/COL201715.010007
Topic:General
Keywords(OCIS Code): 060.5625  070.1170  060.2310  

Abstract
We review the recent progress of photonic generation of millimeter wave (MMW)-ultra-wideband (UWB) signals. To fully satisfy the standard defined by the Federal Communications Commission (FCC), the baseband signal (background signal) and the residual local oscillator (LO) signal should be well controlled. We discuss several schemes in this work for generating background-free MMW-UWB signals that are fully compliant with the FCC requirement.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (3273 KB)

Share:


Received:2016/9/14
Accepted:2016/12/6
Posted online:2017/1/10

Get Citation: Wei Li, Ming Li, and Ninghua Zhu, "Photonic generation of background-free millimeter-wave ultra-wideband signals (Invited Paper)," Chin. Opt. Lett. 15(01), 010007(2017)

Note: This work was supported in part by the National Natural Science Foundation of China (Nos. 61377069, 61431003, and 61335005), the National 863 Program of China (No. 2015AA017002), and the Beijing Nova Program.



References

1. J. Yao, F. Zeng, and Q. Wang, J. Lightwave Technol. 25, 3219 (2007).

2. U.S. Federal Communications Commission, “Revision of Part 15 of the commissions rules regarding ultra wideband transmission systems,” First Report and Order, ET Docket 98-153 (2002).

3. M. Ran, B. I. Lembrikov, and Y. Ben Ezra, IEEE Photonics J. 2, 36 (2010).

4. S. Pan, and J. P. Yao, J. Lightwave Technol. 28, 2445 (2010).

5. J. Dong, X. Zhang, J. Xu, D. Huang, S. Fu, and P. Shum, Opt. Lett. 32, 1223 (2007).

6. Y. M. Chang, J. Lee, and J. H. Lee, Opt. Express 18, 20072 (2010).

7. W. Li, L. X. Wang, W. Hofmann, N. H. Zhu, and D. Bimberg, Opt. Express 20, 20222 (2012).

8. J. Li, Y. Liang, and K. K. Y. Wong, IEEE Photon. Technol. Lett. 21, 1429 (2009).

9. Y. L. Guennec, and R. Gary, IEEE Photon. Technol. Lett. 19, 996 (2007).

10. Q. Chang, Y. Tian, T. Ye, J. Gao, and Y. Su, IEEE Photon. Technol. Lett. 20, 1651 (2008).

11. W. Li, L. X. Wang, J. Y. Zheng, M. Li, and N. H. Zhu, IEEE Photon. Technol. Lett. 25, 1875 (2013).

12. F. Zhang, J. Wu, S. Fu, K. Xu, Y. Li, X. Hong, P. Shum, and J. Lin, Opt. Express 18, 15870 (2010).

13. T. Kawanishi, T. Sakamoto, and M. Izutsu, IEEE Microwave Wireless Compon. Lett. 15, 153 (2005).

14. F. Zhang, and S. Pan, Opt. Express 21, 27017 (2013).

15. Y. Du, J. Zheng, L. Wang, H. Wang, N. Zhu, and J. Liu, IEEE Photon. Technol. Lett. 25, 335 (2013).

16. L. X. Wang, W. Li, J. Y. Zheng, H. Wang, J. G. Liu, and N. H. Zhu, Opt. Lett. 38, 579 (2013).

17. W. Li, L. X. Wang, J. Y. Zheng, M. Li, and N. H. Zhu, IEEE Photon. J. 5, 5502007 (2013).

18. W. Li, W. T. Wang, W. H. Sun, L. X. Wang, and N. H. Zhu, Opt. Lett. 39, 1201 (2014).

19. W. Li, W. T. Wang, W. H. Sun, J. G. Liu, and N. H. Zhu, Opt. Express 22, 10351 (2014).

20. F. Z. Zhang, X. Z. Ge, and S. L. Pan, Photon. Res. 2, B5 (2014).

21. W. Li, L. X. Wang, M. Li, and N. H. Zhu, Opt. Lett. 38, 3441 (2013).

22. W. Li, W. T. Wang, W. H. Sun, L. X. Wang, and N. H. Zhu, Opt. Express 22, 7446 (2014).


Save this article's abstract as
Copyright©2018 Chinese Optics Letters 沪ICP备05015387