2019-02-19 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 12 , Vol. 14 , 2016    10.3788/COL201614.120603

1.5 μm, 8?×?12.5 Gb/s of hybrid-integrated TOSA with isolators and ROSA for 100 GbE application
Zeping Zhao1, Yu Liu1, Zhike Zhang1, Xiangfei Chen向飞 陈2, Jianguo Liu1, and Ninghua Zhu1
1 State Key Laboratory on Integrated Optoelectronics, [Institute of Semiconductors], Chinese Academy of Sciences, Beijing 1 00083, China
2 Microwave-Photonics Technique Laboratory National Laboratory of Microstructures &
School of Engineering and Applied Sciences, [Nanjing University], Nanjing 2 10093, China

Chin. Opt. Lett., 2016, 14(12): pp.120603

Topic:Fiber optics and optical communication
Keywords(OCIS Code): 060.0060  140.0140  230.0230  250.0250  

Compact transmitter and receiver optical sub-assemblies (TOSA and ROSA) are fabricated in our laboratory and have an aggregated capacity of 100 Gb/s. Specially, directly modulated laser (DML) drivers with two layers of electrical circuit boards are designed to inject RF signals and bias currents separately. For all the lanes, the 3 dB bandwidth of the cascade of the TOSA and ROSA exceeds 9 GHz, which allows the 12.5 Gb/s operation. With the 12.5 Gb/s?×?8-lane operation, clear eye diagrams for back-to-back and 30-km amplified transmission with a dispersion compensation fiber are achieved. Low cost and simple processing technology make it possible to realize commercial production.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (1095 KB)


Posted online:2016/11/30

Get Citation: Zeping Zhao, Yu Liu, Zhike Zhang, Xiangfei Chen向飞 陈, Jianguo Liu, and Ninghua Zhu, "1.5 μm, 8?×?12.5 Gb/s of hybrid-integrated TOSA with isolators and ROSA for 100 GbE application," Chin. Opt. Lett. 14(12), 120603(2016)

Note: This work was supported by the National High-Tech Research and Development Program of China (No. 2013AA014201) and the National Natural Science Foundation of China (Nos. 61575186 and 61635001).


1. C. Cole, “Beyond 100G client optics,” http://www.ieee802.org/3/ba/ (2012).

2. Z. Zhang, X. Jiang, J. Wang, X. Chen, and L. Wang, Chin. Opt. Lett. 13, 020603 (2015).

3. B. Pezeshki, J. Heanue, D. Ton, T. Schrans, S. Rangarajan, S. Zou, G. W. Yoffe, A. Liu, M. Sherback, J. Kubicky, and P. Ludwig, J. Lightwave Technol. 32, 2796 (2014).

4. S. Hurt, A. G. Dentai, J. L. Pleumeekers, and A. Mathur, in Proceeding of IEEE Conference on Device Research , 183 (2007).

5. W. Kobayashi, T. Tadokoro, T. Ito, T. Fujisawa, T. Yamanaka, Y. Shibata, and M. Kohtoku, in Proceeding of IEEE Conference on International Semiconductor Laser , 50 (2012).

6. T. Simoyama, M. Matsuda, S. Okumura, A. Uetake, M. Ekawa, and T. Yamamoto, in Proceeding of IEEE Conference on International Semiconductor Laser , 54 (2012).

7. W. Kobayashi, T. Fujisawa, K. Tsuzuki, Y. Ohiso, T. Ito, S. Kanazawa, T. Yamanaka, and H. Sanjoh, J. Lightwave Technol. 32, 3 (2014).

8. J. Zhao, X. Chen, N. Zhou, X. Huang, and W. Liu, Chin. Opt. Lett. 12, 99 (2014).

9. T. Schrans, G. Yoffe, Y. Luo, and R. Narayan, in Proceeding of IEEE Conference on Optical fiber Communication , 1 (2009).

10. J. Wang, Y. Liu, X. Chen, J. Liu, and N. Zhu, Chin. Sci. Bull. 59, 2387 (2014).

11. P. Bernasconi, L. Buhl, D. T. Neilson, J. H. Sinsky, N. Basavanhally, C. Bolle, M. A. Cappuzzo, E. Y. Chen, M. Earnshaw, R. Farah, R. Frahm, A. Gasparyan, D. Gill, L. Gomez, R. Keller, F. Klemens, P. Kolodner, Y. Low, R. Papazian, F. Pardo, D. Ramsey, M. S. Rasras, T. Salamon, E. M. Simon, E. Sutter, M. Achouche, S. Barbet, F. Blanche, F. Brillouet, N. Chimot, J. Decobert, H. Debregeas, O. Drisse, F. Franchin, H. Gariah, J.-L. Gentner, G. Glastre, N. Lagay, D. Lanteri, F. Lelarge, F. Mallecot, F. Pommereau, J.-G. Provost, G. Azzini, L. Fratta, P. Galli, V. Guja, S. Jovane, D. Palmisano, F. Perego, and R. Peruta, IEEE Photon. Technol. Lett. 24, 1657 (2012).

12. Y. Huang, T. Okuda, K. Sato, Y. Muroya, T. Sasaki, and K. Kobayashi, IEEE Photon. Technol. Lett. 13, 245 (2001).

13. R. T. Sahara, R. A. Salvatore, A. Hohl-Abichedid, and H. Lu, IEEE J. Quantum Electron. 38, 620 (2002).

14. J. Zhang, N. C. Frateschi, W. Choi, H. Gebretsadik, R. Jambunathan, and A. E. Bond, Electron. Lett. 39, 1841 (2003).

15. Y. Ni, X. Kong, X. Gu, G. Zheng, and J. Luan, Chin. Opt. Lett. 312, 37 (2013).

16. J. Hou, X. Chen, L. Wang, W. Chen, and N. Zhu, IEEE Photon. J. 4, 2189 (2012).

17. Z. Zhang, Y. Liu, J. Wang, J. Bai, H. Yuan, X. Wang, J. Liu, and N. Zhu, IEEE Photon. J. 8, 1 (2016).

18. Z. K. Zhang, Y. Liu, J. G. Liu, and N. H. Zhu, J. Semicond. 36, 3 (2015).

Save this article's abstract as
Copyright©2018 Chinese Optics Letters 沪ICP备15018463号-7 公安备案沪公网安备 31011402005522号