2018-10-22 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 04 , Vol. 14 , 2016    10.3788/COL201614.042401


Influence of surface roughness on surface plasmon resonance phenomenon of gold film
Zhitao Yang1;2, Changjian Liu2, Yachen Gao1;3, Jiyu Wang2, and Wenlong Yang2
1 Postdoctoral Mobile Research Station of the School of Electronic Engineering, [Heilongjiang University], Harbin 1 50080, China
2 School of Applied Sciences, [Harbin University of Science and Technology], Harbin 150080, China
3 Key Laboratory of Electronics Engineering, College of Heilongjiang Province, [Heilongjiang University], Harbin 150080, China

Chin. Opt. Lett., 2016, 14(04): pp.042401

DOI:10.3788/COL201614.042401
Topic:Optics at surfaces
Keywords(OCIS Code): 240.6680  310.6860  

Abstract
We experimentally investigate the effects of the surface roughness of gold thin films on the properties of surface plasmon resonance. By annealing at different temperatures, film samples with different surface morphologies are obtained. Specifically, due to the diffusion of the gold atoms towards the films’ surface, the surface root-mean-square roughness decreases with the increasing annealing temperature. Then, we measure the surface plasmon resonance of the samples. The results show that the resonance angle of the surface plasmon resonance is sensitive to the root-mean-square roughness, and it gradually decreases by reducing the surface root-mean-square roughness.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (500 KB)

Share:


Received:2015/11/6
Accepted:2016/1/25
Posted online:2016/3/2

Get Citation: Zhitao Yang, Changjian Liu, Yachen Gao, Jiyu Wang, and Wenlong Yang, "Influence of surface roughness on surface plasmon resonance phenomenon of gold film," Chin. Opt. Lett. 14(04), 042401(2016)

Note: This work was supported by the Heilongjiang Postdoctoral Science Foundation (No. LBH-Z12227), the National Natural Science Foundation of China (Nos. 61275117, 51301055, 61177079, and 61205071), the Heilongjiang Province Science Foundation (No. F201112), and the Foundation of the Key Laboratory of Electronics Engineering, College of Heilongjiang, Province of China.



References

1. J. Homola, Anal Bioanal Chem.377, 528 (2003).

2. Y. Chen, and Z. Li, Chin. Opt. Lett.13, 020501 (2015).

3. W.-H. Tsai, K.-C. Lin, S.-M. Yang, Y.-C. Tsao, and P.-J. Ho, Chin. Opt. Lett.12, 042801 (2014).

4. M. Piliarik, and J. Homola, Opt. Express17, 16505 (2009).

5. S. Negm, and H. Talaat, Ultrason. Symp.2, 797 (1994).

6. Z. Yang, D. Gu, and Y. Gao, Opt. Commun.329, 180 (2014).

7. A. Turkovic, P. Dubcek, Z. Crnjak-Orel, and S. Bernstorff, Nanostruct. Mater.11, 909 (1999).

8. A. S. Avilov, V. V. Volkov, S. P. Gubin, Yu. A. Dyakova, M. A. Ermakova, M. A. Zaporozhozets, Yu. A. Kuzin, M. A. Marchenkovaa, V. A. Mityukhlyaev, E. G. Rustamova, S. N. Sulyanov, P. A. Todua, and L. I. Chekrygina, Nanotechnol. Russ.8, 309 (2013).

9. P. Sangpour, O. Akhaban, A. Z. Moshfegh, and M. Roozbehi, Appl. Surf. Sci.254, 286 (2007).

10. J. Morgiel, M. Ferraris, A. M. Janus, D. Chiaretta, and M. Pomorska, J. Microsc.237, 333 (2010).


Save this article's abstract as
Copyright©2018 Chinese Optics Letters 沪ICP备05015387