2018-10-16 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 04 , Vol. 13 , 2015    10.3788/COL201513.041401


Distributed Bragg reflector laser (1.8 \mu m) with 10 nm wavelength tuning range
Junping Mi, Hongyan Yu, Lijun Yuan, Shiyan Li, Mengke Li, Song Liang, Qiang Kan, Jiaoqing Pan
Key Laboratory of Semiconductor Materials Science, [Institute of Semiconductors, Chinese Academy of Sciences], Beijing 100083, China

Chin. Opt. Lett., 2015, 13(04): pp.041401

DOI:10.3788/COL201513.041401
Topic:Lasers and laser optics
Keywords(OCIS Code): 140.0140  140.5960  140.3600  140.3570  

Abstract
We report a 1.8 \mu m two-section distributed Bragg reflector laser using butt-jointed InGaAsP bulk material as the waveguide core layer. The threshold current is 17 mA and the output power is 8 mW on average. The threshold current, output power, and emitting wavelength dependences on temperature are measured. The obtained wavelength tuning range is 10 nm. This device has potential applications in simultaneous multiple-gas detection.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (699 KB)

Share:


Received:2014/11/14
Accepted:2015/1/16
Posted online:2015/3/13

Get Citation: Junping Mi, Hongyan Yu, Lijun Yuan, Shiyan Li, Mengke Li, Song Liang, Qiang Kan, Jiaoqing Pan, "Distributed Bragg reflector laser (1.8 \mu m) with 10 nm wavelength tuning range," Chin. Opt. Lett. 13(04), 041401(2015)

Note: This work was supported by the National "863" Project of China under Grant No. 2012AA012203.



References

1. J.-P. Besson, S. Schilt, and L. Thévenaz, Spectrochim. Acta Part A 60, 3449 (2004).

2. R. Phelan, M. Lynch, J. F. Donegan, and V. Weldon, Appl. Opt. 44, 5824 (2005).

3. J. Shao, Y. Han, L. Juo, L. Wang, Y. Han, Z. Zhou, and R. Kan, Appl. Opt. 52, 7462 (2013).

4. S. Murata, I. Mito, and K. Kobayashi, Electron. Lett. 23, 403 (1987).

5. K. Shinoda, T. Kitatani, M. Aoki, M. Mukaikubo, K. Uchida, and K. Uomi, IEEE Photon. Technol. Lett. 18, 2383 (2006).

6. S. Afzal, F. Schnabel, W. Scholz, J. P. Reithmaier, D. Gready, G. Eisenstein, P. Melanen, V. Vilokkinen, I. Montrosset, and M. Vallone, IEEE Photon. Technol. Lett. 23, 411 (2011).

7. L. Han, S. Liang, C. Zhang, L. Yu, L. Zhao, H. Zhu, B. Wang, C. Ji, and W. Wang, Chin. Opt. Lett. 12, 091402 (2014).

8. Q. Kan, Y. Ding, L. Zhao, H. Zhu, F. Zhou, L. Wang, B. Wang, and W. Wang, Chin. Opt. Lett. 3, 455 (2005).

9. B. Niu, H. Yu, L. Yu, D. Zhou, L. Zhao, J. Pan, and W. Wang, Proc. SPIE 8555, 85550Z (2012).

10. T. Brenner, E. Gini, and H. Melchior, IEEE Photon. Technol. Lett. 5, 212 (1993).

11. J. Ahn, K. R. Oh, C. Park, S. G. Han, H. G. Kim, B. Lee, D. Kim, and C. Park, Semicond. Sci. Technol. 13, 1205 (1998).

12. S. H. Oh, C. W. Lee, J. M. Lee, K. S. Kim, H. Ko, S. Park, and M. H. Park, IEEE Photon. Technol. Lett. 15, 1339 (2003).

13. D. Pasquariello, E. S. Bjorlin, D. Lasaosa, Y. J. Chiu, J. Piprek, and J. E. Bowers, J. Lightwave Technol. 24, 1470 (2006).

14. L. Yu, H. Wang, D. Lu, S. Liang, C. Zhang, B. Pan, L. Zhang, and L. Zhao, IEEE Photon. J. 6, 1501308 (2014).


Save this article's abstract as
Copyright©2018 Chinese Optics Letters 沪ICP备05015387