2018-10-16 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 04 , Vol. 13 , 2015    10.3788/COL201513.040402

Light source system for high-precision flat-field correction and the calibration of an array detector
Fugui Yang, Qiushi Wang, Ming Li
Laboratory of X-ray Optics and Technologies, Beijing Synchrotron Radiation Facility, [Institute of High Energy Physics, Chinese Academy of Sciences], Beijing 100049, China

Chin. Opt. Lett., 2015, 13(04): pp.040402

Keywords(OCIS Code): 040.1240  290.7050  290.0290  030.1670  030.6140  

Signal distortion due to the non-uniform response of the detector degrades the measurement accuracy of most metrology instruments. In this Letter, we report a newly developed calibration source system for reference-based non-uniformity correction using a laser source, a fiber, and a diffusive module. By applying the Monte Carlo simulation, we show that the transmittance of the system highly depends on the cavity reflection of the diffusive module. We also demonstrate the use of this system to achieve a flat field at a very low non-uniformity (less than 0.2%) with proper illumination intensity, which most costly commercial integrating sphere systems traditionally cannot provide.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (580 KB)


Posted online:2015/3/19

Get Citation: Fugui Yang, Qiushi Wang, Ming Li, "Light source system for high-precision flat-field correction and the calibration of an array detector," Chin. Opt. Lett. 13(04), 040402(2015)

Note: This work was supported by the National Natural Science Foundation of China under Grant No. 11005123. The anonymous referees are appreciated for their careful reading and valuable comments to the manuscript.


1. V. V. Yashchuk, Proc. SPIE 6317, 63170A (2006).

2. D. Scribner, K. Sarkady, J. Caulfield, M. Kruer, G. Katz, and C. Gridley, Proc. SPIE 1308, 224 (1990).

3. J. G. Harris and Y. M. Chiang, IEEE Trans. Image Process. 8, 1148 (1999).

4. D. Scribner, K. Sarkady, M. Kruer, J. Caldfield, J. Hunt, M. Colbert, and M. Descour, Proc. SPIE 1541, 100 (1991).

5. C. Zuo, Q. Chen, G. Gu, and X. Sui, J. Opt. Soc. Am. A 28, 1164 (2011).

6. A. Friedenberg and I. Goldbatt, Opt. Eng. 37, 1251 (1998).

7. E. Gurevich and A. Fein, Proc. SPIE 4820, 809 (2002).

8. M. Schulz and L. Caldwell, Infrared Phys. Technol. 36, 763 (1995).

9. http://www.pro-lite.uk.com/File/uniform_sources.php.

10. J. L. Kirschman, E. E. Domning, K. D. Franck, S. C. Irick, A. A. McDowell, W. R. McKinney, G. Y. Morrison, B. V. Smith, T. Warwick, and V. V. Yashchuk, Proc. SPIE 6704, 670409 (2007).

11. T. Yandayan, R. D. Geckeler, and F. Siewert, Proc. SPIE 9206, 92060F (2014).

12. S. W. Brown, G. P. Eppeldauer, and K. R. Lykke, Appl. Opt. 45, 8218 (2006).

13. M. Xia, J. Li, Z. Li, D. Gao, W. Pang, D. Li, and X. Zheng, Chin. Opt. Lett. 12, 121201 (2014).

14. J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts and Company, 2007).

15. D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, Phys. Rev. Lett. 60, 1134 (1988).

16. L. V. Wang and H. Wu, Biomedical Optics: Principles and Imaging (Wiley, 2012).

17. R. M. Pope and E. S. Fry, Appl. Opt. 36, 8710 (1997).

18. R. J. Nussbaumer, W. Caseri, T. Tervoort, and P. Smith, J. Nanopart Res. 4, 319 (2002).

19. B. Redding, G. Allen, E. R. Dufresne, and H. Cao, Appl. Opt. 52, 1168 (2013).

20. J. R. Frisvad, N. J. Christensen, and H. W. Jensen, ACM Trans. Graph. 26, 60 (2007).

Save this article's abstract as
Copyright©2018 Chinese Optics Letters 沪ICP备05015387