2018-09-26 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 01 , Vol. 13 , 2015    10.3788/COL201513.012303

Terahertz broadband polarizer using bilayer subwavelength metal wire-grid structure on polyimide film
Xiao Wu1, Huayue Li1, Shixiong Liang2, Jianjun Liu1, Zhanghua Han1, Zhi Hong1
1 Centre for THz Research, [China Jiliang University], Hangzhou 310018, China
2 Science and Technology on ASIC Laboratory, [Hebei Semiconductor Research Institute], Shijiazhuang 050051, China

Chin. Opt. Lett., 2015, 13(01): pp.012303

Topic:Optical devices
Keywords(OCIS Code): 230.5440  040.2235  

A terahertz (THz) broadband polarizer using bilayer subwavelength metal wire-grid structure on both sides of polyimide film is simulated by the finite-difference time-domain method. We analyze the effect of film -thickness, material loss, and lateral shift between two metallic gratings on the performance of the THz -polarizer. Bilayer wire-grid polarizers are fabricated by a simple way of laser induced and non-electrolytic plating with copper. The THz time-domain spectroscopy measurements show that in 0.2–1.6 THz frequency range, the extinction ratio is better than 45 dB, the average extinction ratio reaches 53 dB, and the -transmittance exceeds 67%, which shows great advantage over conventional single wire-grid THz polarizer.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (761 KB)


Posted online:2014/12/22

Get Citation: Xiao Wu, Huayue Li, Shixiong Liang, Jianjun Liu, Zhanghua Han, Zhi Hong, "Terahertz broadband polarizer using bilayer subwavelength metal wire-grid structure on polyimide film," Chin. Opt. Lett. 13(01), 012303(2015)

Note: This work was partly supported by the National Natural Science Foundation of China under Grant Nos. 61377108 and 61107042.


1. M. Tonouchi, Nat. Photon. 1, 97 (2007).

2. J. B. Baxter and G. W. Guglietta, Anal. Chem. 83, 4342 (2011).

3. D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, Appl. Phys. B 68, 1085 (1999).

4. J. F. O’Hara, R. Singh, I. Brener, E. Smirnova, J. Han, A. J. Taylor, and W. Zhang, Opt. Express 16, 1786 (2008).

5. A. Sell, A. Leitenstorfer, and R. Huber, Opt. Lett. 33, 2767 (2008).

6. J. Wang, S. Wang, R. Singh, and W. Zhang, Chin. Opt. Lett. 11, 011602 (2013).

7. A. K. Azad, H. T. Chen, X. Lu, J. Gu, N. Weisse-Bernstein, E. Akhadov, A. J. Taylor, W. Zhang, and J. F. O'Hara, Terahertz Sci. Technol. 2, 15 (2009).

8. A. Wojdyla and G. Gallot, Opt. Express 19, 14099 (2011).

9. C. F. Hsieh, Y. C. Lai, R. P. Pan, and C. L. Pan, Opt. Lett. 33, 1174 (2008).

10. I. Yamada, K. Takano, M. Hangyo, M. Saito, and W. Watanabe, Opt. Lett. 34, 274 (2009).

11. A. E. Costley, K. H. Hursey, G. F. Neill, and J. M. Ward, J. Opt. Soc. Am. 67, 979 (1977).

12. Y. Ma, A. Khalid, T. D. Drysdale, and D. R. Cumming, Opt. Lett. 34, 1555 (2009).

13. Z. Huang, H. Park, E. P. Parrott, H. P. Chan, and E. P. MacPherson, IEEE Photon. Technol. Lett. 25, 81 (2013).

14. W. T. Wang, J. J. Liu, X. J. Li, H. Han, and Z. Hong, Acta Opt. Sin. 32, 1231002 (2012).

15. M. Zhang, X. Li, S. Liang, P. Liu, J. Liu, and Z. Hong, Chin. Opt. Lett. 11, 122301 (2013).

16. L. Sun, Z. H. Lv, W. Wu, W. T. Liu, and J. M. Yuan, Appl. Opt. 49, 2066 (2010).

17. L. Y. Deng, J. H. Teng, L. Zhang, Q. Y. Wu, H. Liu, X. H. Zhang, and S. J. Chua, Appl. Phys. Lett. 101, 011101 (2012).

18. Z. Huang, E. P. J. Parrott, H. Park, H. P. Chan, and E. Pickwell-MacPherson, Opt. Lett. 39, 793 (2014).

19. H. Tao, A. C. Strikwerda, K. Fan, C. M. Bingham, W. J. Padilla, X. Zhang, and R. D. Averitt, J. Phys. D: Appl. Phys. 41, 232004 (2008).

20. H. T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, Phys. Rev. Lett. 105, 073901 (2010).

Save this article's abstract as
Copyright©2018 Chinese Optics Letters 沪ICP备05015387