2017-11-22 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 07 , Vol. 12 , 2014    10.3788/COL201412.072201


Improvement of thickness uniformity and elements distribution homogeneity for multicomponent films prepared by coaxial scanning pulsed laser deposition technique
Juguang Hu, Qiwen Li, Xiaodong Lin, Yi Liu, Jinghua Long, Liuyang Wang, Huabin Tang
College of Physics Science and Technology, [Shenzhen University], Shenzhen 518060, China

Chin. Opt. Lett., 2014, 12(07): pp.072201

DOI:10.3788/COL201412.072201
Topic:Optical design and fabrication
Keywords(OCIS Code): 220.0220  220.4830  310.0310  310.1860  

Abstract
In conventional pulsed laser deposition (PLD) technique, plume deflection and composition distribution change with the laser incident direction and pulse energy, then causing uneven film thickness and composition distribution for a multicomponent film and eventually leading to low device quality and low rate of final products. We present a novel method based on PLD for depositing large CIGS films with uniform thickness and stoichiometry. By oscillating a mirror placed coaxially with the incident laser beam, the laser's focus is scanned across the rotating target surface. This arrangement maintains a constant reflectance and optical distance, ensuring that a consistent energy density is delivered to the target surface by each laser pulse. Scanning the laser spot across the target suppresses the formation of micro-columns, and thus the plume deflection effect that reduces film uniformity in conventional PLD technique is eliminated. This coaxial scanning PLD method is used to deposit a CIGS film, 500 nm thick, with thickness uniformity exceeding ±3% within a 5 cm diameter, and exhibiting a highly homogeneous elemental distribution.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (226 KB)

Share:


Received:2013/11/27
Accepted:2014/4/29
Posted online:2014/6/25

Get Citation: Juguang Hu, Qiwen Li, Xiaodong Lin, Yi Liu, Jinghua Long, Liuyang Wang, Huabin Tang, "Improvement of thickness uniformity and elements distribution homogeneity for multicomponent films prepared by coaxial scanning pulsed laser deposition technique," Chin. Opt. Lett. 12(07), 072201(2014)

Note: This work was supported by the Shenzhen Basic Research Project of Science and Technology under Grant No. JCYJ20120613112423982.



References

1. H. Palonen, H. Huhtinen, and P. Paturi, Thin Solid Films 519, 8058 (2011).

2. K. Develos-Bagarinao, H. Yamasaki, J. C. Nie, and Y. Nakagawa, Supercond. Sci. Tech. 18, 667 (2005).

3. P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, and M. Powalla, Prog. Photovolt Res. Appl. 19, 894 (2011).

4. Y. H. Jo, B. C. Mohanty, and Y. S. Cho, Appl. Sur. Sci. 256, 6819 (2010).

5. J. J. Yang, R. Wang, W. Liu, Y. Sun, and X. N. Xiao, J. Phys. D Appl. Phys. 42, 215305 (2009).

6. A. S. Kindyak, V. V. Kindyak, and V. F. Gremenok, Mat. Lett. 28, 273 (1996).

7. T. Nakada and S. Shirakata, Sol. Energ. Mat. Sol. C 95, 1463 (2011).

8. C. D. R. Ludwig, T. Gruhn, C. Felser, T. Schilling, J. Windeln, and P. Kratzer, Phys. Rev. Lett. 105, 025702 (2009).

9. H. Qi, M. Zhu, W. Zhang, K. Yi, H. He, and J. Shao, Chin. Opt. Lett. 10, 013104 (2012).

10. S. Venkatachalam and Y. Kanno, Curr. Appl. Phys. 9, 1232 (2009).

11. J. M. Lackner, Sur. Coat. Technol. 200, 1439 (2005).

12. N. Pryds, J. Schou, and S. Linderoth, Appl. Surf. Sci. 253, 8231 (2007).

13. M. Fukutomi, K. Komori, K. Kawagishi, and K. Togano, Phys. C 357-360, 1342 (2001).

14. J. A. Greer and M. D. Tabat, J. Vac. Sci. Technol. A 13, 1175 (1995).

15. A. Pique, R. A. McGill, D. B. Chrisey, D. Leonhardt, T. E. Mslna, B. J. Spargo, J. H. Callahan, R. W. Vachet, R. Chung, and M. A. Bucaro, Thin Solid Films 355-356, 536 (1999).

16. D. B. Chrisey, A. Pique, R. A. McGill, J. S. Horwitz, and B. R. Ringeisen, Chem. Rev. 103, 553 (2003).

17. L. Egerhazi, Zs. Geretovszky, T. Szorenyi, and F. Bari, Appl. Sur. Sci. 257, 5324 (2011).

18. C. Chen, P. P. Ong, and H. Wang, Thin Solid Films 382, 275 (2001).

19. D. Guido, L. Cultrera, and A. Perrone, Surf. Coat. Tech. 180-181, 603 (2004).

20. W. Biegel, R. Klarmann, B. Stritzker, B. Schey, and M. Kuhn, Appl. Surf. Sci. 168, 227 (2000).

21. N. Pryds, B Toftmann, J. B. Bilde-Sorensen, and S. Linderoth, Appl. Surf. Sci. 252, 4882 (2006).

22. L. Cultrera, M. I. Zeifman, and A. Perrone, Phys. Rev. B 73, 075304 (2006).

23. J. Schou, Appl. Surf. Sci. 255, 5191 (2009).

24. C. V. Varanasi, K. D. Leedy, D. H. Tomich, and G. Subramanyam, Thin Solid Films 517, 2878 (2009).

25. X. Ni, K. K. Anoop, M. Bianco, S. Amoruso, X. Wang, T. Li, M. Hu, and Z. Song, Chin. Opt. Lett. 11, 093201 (2013).

26. T. C. Droubay, L. Qiao, T. C. Kaspar, M. H. Engelhard, V. Shutthanandan, and S. A. Chambers, Appl. Phys. Lett. 97, 124105 (2010).


Save this article's abstract as
Copyright©2014 Chinese Optics Letters 沪ICP备05015387