2018-09-25 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 07 , Vol. 12 , 2014    10.3788/COL201412.070801

Evaluation of optical propagation and radiation in optical waveguide using a numerical method
Mansour Bacha1;2, Abderrahmane Belghoraf2
1 Space Technology Research Division, [Centre of Satellites Development], BP 4065, Ibn Rochd USTO Oran, Algeria
2 Electronics Department, [University of Sciences and Technology of Oran Mohamed Boudiaf], BP 1505, Oran Elmnaouer, Algeria

Chin. Opt. Lett., 2014, 12(07): pp.070801

Topic:Geometrical optics
Keywords(OCIS Code): 080.1510  130.3120  230.7390  

We introduce a mathematical model based on a concept of intrinsic mode in order to analyse and synthesise optical wave propagation and radiation occurring in a non-uniform optical waveguide used in integrated optics as optical coupler. The model is based on numerical evaluation of electromagnetic wave by applying an intrinsic field integral to evaluate the field behaviour inside the optical waveguide. To analyse the field distribution inside the non-uniform waveguide and predict the beam propagation of optical energy involved in the propagation process, it is necessary to track the motion of any observation point along the tapered waveguide itself. Physically, the rays of the spectrum undergo reflections on the waveguide boundaries until the cut-off occurs and the phenomena of radiation begin. The numerical results show good agreement with those obtained by classical methods of evaluation used by other works.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (1491 KB)


Posted online:2014/6/20

Get Citation: Mansour Bacha, Abderrahmane Belghoraf, "Evaluation of optical propagation and radiation in optical waveguide using a numerical method," Chin. Opt. Lett. 12(07), 070801(2014)

Note: PRAJZLER, Vaclav|xprajzlv@feld.cvut.czThis work was co-supported by the University of Sciences and Technology of Oran Mohamed Boudiaf (US-TOMB) and the Centre of Satellites Development (CDS), Oran, Algeria.


1. K. Okamoto, Fundamentals of Optical Waveguides (Elsevier, Burlington, 2006).

2. A. Boudrioua, Photonic Waveguides Theory and Applications (ISTE, London, 2009).

3. G. Lifante, Integrated Photonics: Fundamentals (John Willey & Sons, Chichester, 2003).

4. W. Ling, Z. Sheng, C. Qiu, H. Li, A. Wu, X. Wang, S. Zou, and F. Gan, Chin. Opt. Lett. 11, 041301 (2013).

5. A. J. Whang, S. Chao, C. Chou, C. Lin, C. Chang, K. Jhan, and C. Wang, Chin. Opt. Lett. 11, 122201 (2013).

6. A. Belghoraf, AMSE J. Mod. Meas. Control General Phys. 74, 51 (2001).

7. R. G. Hunsperger, Integrated Optics: Theory and Technology (Springer, New York, 2009).

8. J. M. Arnold, A. Belghoraf, and A. Dendane, IEE Proceedings J. 132, 314 (1985).

9. A. Dendane and J. M. Arnold, IEEE J. Quantum Electron. QE-22, 1551 (1986).

10. M. Bacha and A. Belghoraf, Int. Rev. Mod. Sim. 6, 1624 (2013).

11. V. Prajzler, H. Tuma, J. Spirkova, and V. Jerabek, Radioengineering. 22, 233 (2013).

12. K. Kawano and T. Kitoh, Introduction to Optical Waveguide Analysis (John Willey & Sons, New York, 2001).

13. G. L. Yip, Integ. Opt. Cir. SPIE. 1583, 240 (1991).

14. Y. T. Han, J. U. Shin, D. J. Kim, S. H. Park, Y. J. Park, and H. K. Sung, ETRI J. 25, 535 (2003).

15. M. M. Ismail and M. N. Shah Zainuddin, Appl. Mech. Mater. 52-54, 2133 (2011).

16. L. Virot, L. Vivien, J. F′ed′eli, Y. Bogumilowicz, J. Hartmann, F. Boeuf, P. Crozat, D. Marris-Morini, and E. Cassan, Photon. Res. 1, 140 (2013).

17. R. Tao, X. Wang, H. Xiao, P. Zhou, and L. Si, Photon. Res. 1, 186 (2013).

18. P. K. Tien, G. Smolinsky, and R. J. Martin, IEEE Trans.

Microwave Theory Tech. MTT-23, 79 (1975).

Save this article's abstract as
Copyright©2018 Chinese Optics Letters 沪ICP备05015387