2018-08-19 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue s1 , Vol. 11 , 2013    10.3788/COL201311.S10602

Refractive index inhomogeneity of LaF3 film at deep ultraviolet wavelength
Dawei Lin1, Chun Guo1;2, Bincheng Li1
1 [Institude of Optics and Electrics, Chinese Academy of Sciences], Chengdu 610209, China
2 [University of the Chinese Academy of Sciences], Beijing 100039, China

Chin. Opt. Lett., 2013, 11(s1): pp.S10602

Topic:Duv/euv coatings
Keywords(OCIS Code): 310.6188  310.6860  

It is well known that the optical property of an optical thin film can be influenced by even small inhomogeneity of refractive index (RI). In order to investigate the RI inhomogeneity of LaF3 single layer in deep ultraviolet (DUV) range, single-layer LaF3 samples deposited on fused silica and CaF2 substrates are prepared by resistive heating evaporation at different deposition temperatures. The reflectance and transmittance spectra of LaF3 film samples are measured with a spectrophotometer, and used to calculate the RI inhomogeneity. The experimental results show that no RI inhomogeneity of LaF3 film is observed when deposited on CaF2 substrate, while negative RI inhomogeneity is presented when deposited on fused silica substrate. The level of inhomogeneity is affected by the substrate temperature, which decreases with the increasing substrate temperature from 250 to 400 oC.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (229 KB)


Posted online:2013/5/21

Get Citation: Dawei Lin, Chun Guo, Bincheng Li, "Refractive index inhomogeneity of LaF3 film at deep ultraviolet wavelength," Chin. Opt. Lett. 11(s1), S10602(2013)



1. A. V. Tikhonravov, M. K. Trubetskov, B. T. Sullivan, and J. A. Dobrowolski, Appl. Opt. 36, 7188 (1997).

2. J. A. Dobrowolski and P. G. Verly, Proc. SPIE 2046, (1993).

3. D. P. Arndt, R. M. A. Azzam, J. M. Bennett, J. P. Borgogno, C. K. Carniglia, W. E. Case, J. A. Dobrowolski, U. J. Gibson, T. T. Hart, F. C. Ho, V. A. Hodgkin, W. P. Klapp, H. A. Macleod, E. Pelletier, M. K. Purvis, D. M. Quinn, D. H. Strome, R. Swenson, P. A. Temple, and T. F. Thonn, Appl. Opt. 23, 3571 (1984).

4. B. Bovard, F. J. Van Milligen, M. J. Messerly, S. G. Saxe, and H. A. Macleod, Appl. Opt. 12, 1803 (1985).

5. J. P. Borgogno, F. Flory, P. Roche, B. Schmitt, G. Albrand, E. Pelletier, and H. A. Macleod, Appl. Opt. 23, 3567 (1984).

6. Y. Taki, Vacuum 74, 431 (2004).

7. M. Vijayakumar, S. Selvasekarapandian, T. Gnanasekarah, S. Fujihara, and S. Koji, J. Fluorine Chem. 125, 1119 (2004).

8. M. C. Liu, C. C. Lee, M. Kaneko, K. Nakahira, and Y. Takano, Opt. Eng. 45, 083801 (2006).

9. J. H. Lee and C. K. Hwangbo, Surf. Coating. Tech. 128, 280 (2000).

10. S. Humphrey, Appl. Opt. 21, 4660 (2007).

11. N. K. Sahoo and A. P. Shapiro, Appl. Opt. 4, 698 (1998).

12. Z. Wu and B. Wu, The Growth of Thin Film (in Chinese) (Science Press, Beijing, 2001) pp. 181-187.

Save this article's abstract as
Copyright©2018 Chinese Optics Letters 沪ICP备05015387