2018-09-26 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 12 , Vol. 11 , 2013    10.3788/COL201311.122301

Terahertz Brewster polarizing beam splitter on a polymer substrate
Mengen Zhang1, Xiangjun Li1, Shixiong Liang2, Pingan Liu1, Jianjun Liu1, Zhi Hong1
1 Centre for THz Research, [China Jiliang University], Hangzhou 310018, China
2 Science and Technology on ASIC Laboratory, [Hebei Semiconductor Research Institute], Shijiazhuang 050051, China

Chin. Opt. Lett., 2013, 11(12): pp.122301

Topic:Optical divces
Keywords(OCIS Code): 230.5440  040.2235  

The performance of a terahertz (THz) Brewster polarizing beam splitter on polymer substrate is studied theoretically and experimentally. Simulations by using finite-element method demonstrate that both transmittance/reflectance and their extinction ratios are better than its 45 counterpart in a broad frequency range. Especially, the reflection extinction ratio improves significantly. The results are also verified experimentally with THz time domain spectroscopy (TDS) and backward wave oscillator (BWO) measurement system.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (352 KB)


Posted online:2013/12/9

Get Citation: Mengen Zhang, Xiangjun Li, Shixiong Liang, Pingan Liu, Jianjun Liu, Zhi Hong, "Terahertz Brewster polarizing beam splitter on a polymer substrate," Chin. Opt. Lett. 11(12), 122301(2013)

Note: This work was supported by the National Natural Science Foundation of China under Grant Nos. 60977066and 61377108.


1. H. Tao, W. J. Padilla, X. Zhang, and R. D. Averitt, IEEE J. Sel. Top. Quantum Electron. 17, 92 (2011).

2. Q. Du, J. Liu, and H. Yang, Chin. Opt. Lett. 9, 110015 (2011).

3. X. Zhang, Q. Li, W. Cao, W. Yue, J. Gu, Z. Tian, J. Han, and W. Zhang, Chin. Opt. Lett. 9, 110012 (2011).

4. L. B. Wolff, J. Opt. Soc. Am. A 11, 2956 (1994).

5. C. C. Homes, G. L. Carr, R. P. S. M. Lobo, J. D. La Veigne, and D. B. Tanner, Appl. Opt. 46, 7884 (2007).

6. R. W. McMillan, C. W. Trussell, R. A. Bohlander, J. C. Butterworth, and R. E. Forsythe, IEEE Trans. Microwave Theory Technol. 39, 555 (1991).

7. T. Tamulevicius, I. Grazuleviciute, A. Jurkeviciute, and S. Tamulevicius, Opt. Lasers in Eng. 51, 1185 (2013).

8. H. K. Khanfar and R. M. A. Azzam, Appl. Opt. 48, 5121 (2009).

9. J. Man and Y. Fan, Opt. Laser Technol. 44, 608 (2012).

10. W. A. Challener, P. L. Richards, and S. C. Zillio, Infrared Phys. 20, 215 (1980).

11. A. E. Costley, K. H. Hursey, G. F. Neill, and J. M. Ward, J. Opt. Soc. Am. 67, 979 (1977).

12. Y. Ma, A. Khalid, T. D. Drysdale, and D. R. S. Cumming, Opt. Lett. 34, 1555 (2009).

13. C. W. Berry and M. Jarrahi, J. Infrared Milli Terahz Waves 33, 127 (2012).

14. I. Yamada, K. Takano, M. Hangyo, M. Saito, and W. Watanabe, Opt. Lett. 34, 274 (2009).

15. M. Born and E. Wolf, Principle of Optics (Pergamon Press, New York, 1975).

16. W. Wang, J. Liu, X. Li, H. Han, and Z. Hong, Acta Opt. Sin. 32, 1231002 (2012).

17. R. Zhao, J. He, J. Li, C. Guo, Y. Du, and Z. Hong, Acta Phys. Chem. Sin. 27, 2743 (2011).

Save this article's abstract as
Copyright©2018 Chinese Optics Letters 沪ICP备05015387