2018-10-16 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 10 , Vol. 11 , 2013    10.3788/COL201311.101601


Role of f illing medium of holes in the transmission and negative refractive index of metal–dielectric–metal sandwiched metamaterials
Min Zhong1;2
1 Department of Physics, [Nanjing Normal University], Nanjing 210023, China
2 [Hezhou College], Hezhou, Guangxi 542899, China

Chin. Opt. Lett., 2013, 11(10): pp.101601

DOI:10.3788/COL201311.101601
Topic:Materials
Keywords(OCIS Code): 160.3918  160.4236  260.1180  260.3910  160.5298  

Abstract
The transmission and negative refractive index (NRI) of metal–dielectric–metal sandwiched metamaterials perforated with different filling media of holes are numerically studied. Results indicate that filling the appropriate medium in rectangular holes can enhance transmission. The NRI and frequency bandwidth of NRI decrease with increased relative permittivity of the filling medium. A stronger magnetic response that contributes to the dual NRI metamaterials is found.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (369 KB)

Share:


Received:2013/4/20
Accepted:2013/8/2
Posted online:2013/9/29

Get Citation: Min Zhong, "Role of f illing medium of holes in the transmission and negative refractive index of metal–dielectric–metal sandwiched metamaterials," Chin. Opt. Lett. 11(10), 101601(2013)

Note: This work was supported by the National Natural Science Foundation of China (No. 60778041) and the Graduate Education Innovation Project of Jiangsu Province (No. CXLX13 39).



References

1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemmi, T. Thio, and P. A. Wolf, Nature 391, 667 (1998).

2. J. Han, Z. Tian, J. Gu, M. He, and W. Zhang, Chin. Opt. Lett. 9, S10401 (2011).

3. F. Wang, H. Liu, T. Li, Z. Dong, S. Zhu, and X. Zhang, Phys. Rev. E 75, 016604 (2007).

4. Y. Ye and J. Zhang, Opt. Lett. 30, 1521 (2005).

5. R. Ortuno, C. Garcia-Meca, F. J. Rodriguez-Fortuno, J. Marti, and A. Martinez, Phys. Rev. B 79, 075425 (2009).

6. L. Wang, Z. Wang, T. Sang, F. Wang, Y. Wu, and L. Chen, Chin. Opt. Lett. 6, 198 (2008).

7. R. Gordon, A. G. Brolo, A. Mckinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, Phys. Rev. Lett. 92, 037401 (2004).

8. K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, Phys. Rev. Lett. 92, 183901 (2004).

9. M. Z. Ali, Chin. Opt. Lett. 10, 071604 (2012).

10. D. R. Smith, S. Schult, P. Markos, and C. M. Soukoulis, Phys. Rev. B 65, 195104 (2002).

11. Y. Hua and Z. Li, J. Appl. Phys. 105, 013104 (2009).

12. D. R. Smith, D. C. Vier, T. Konschny, and C. M. Soukoulis, Phys. Rev. E 71, 036617 (2005).

13. S. Zhang, W. Fan, N. C. Paniou, K. J. Malley, R. M. Osgood, and S. R. J. Brueck, Phys. Rev. Lett. 95, 137404 (2005).

14. A. Mary, S. G. Rodrigo, F. J. Garcia-Vidal, and L. Martin-Moreno, Phys. Rev. Lett. 101, 103902 (2008).

15. R. A. Depine and A. Lakhtakia, Microwave Opt. Technol. Lett. 41, 315 (2004).

16. S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck. Phys. Rev. Lett. 95, 137404 (2005).

17. U. K. Chettiar, A. V. Kildishev, H. K. Yuan, W. S. Cai, S. M. Xiao, V. P. Drachev, and V. M. Shalaev. Opt. Lett. 32, 1671 (2007).


Save this article's abstract as
Copyright©2018 Chinese Optics Letters 沪ICP备05015387