2018-08-16 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 10 , Vol. 11 , 2013    10.3788/COL201311.100603


Non-uniform strain measurement along a fiber Bragg grating using optical frequency domain reflectometry
Fangdong Zhu1;2, Dongsheng Zhang1;2, Peng Fan2, Litong Li2, Yongxing Guo2
1 Key Laboratory of Fiber Optic Sensing Technology and Information Processing, [Wuhan University of Technology], Wuhan 430070, China
2 National Engineering Laboratory for Fiber Optic Sensing Technology, [Wuhan University of Technology], Wuhan 430070, China

Chin. Opt. Lett., 2013, 11(10): pp.100603

DOI:10.3788/COL201311.100603
Topic:Fiber optics and optical communications
Keywords(OCIS Code): 060.2370  060.2380  070.2615  

Abstract
A novel method of measuring non-uniform strain along a fiber Bragg grating (FBG) using optical frequency domain reflectometry (OFDR) is proposed and experimentally demonstrated. This method can overcome the problems of traditional non-uniform strain measurement methods for FBGs, i.e., the likelihood of chirping and multiple peaking in the spectrum when FBG is subjected to inhomogeneous strain fields. Wavelength interrogation is realized by OFDR with a narrow-line-width tunable laser as the optical source. When non-uniform strain distributions along areas adjacent to structural damage are measured by this method, good agreement is obtained between measurements and theoretical simulation results.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (752 KB)

Share:


Received:2013/5/2
Accepted:2013/8/2
Posted online:2013/9/29

Get Citation: Fangdong Zhu, Dongsheng Zhang, Peng Fan, Litong Li, Yongxing Guo, "Non-uniform strain measurement along a fiber Bragg grating using optical frequency domain reflectometry," Chin. Opt. Lett. 11(10), 100603(2013)

Note: This work was supported by the National High Technology Research and Development Program of China under Grant No. 2012AA041203.



References

1. P. Giaccari, G. R Dunkel, L. Humbert, J. Botsis, H. G Limberger, and R. P Salathe, Smart Mater. Struct. 14, 127 (2005).

2. J. Zhang, Q. Sun, J. Wo, X. Li, and D. Liu, Chin. Opt. Lett. 11, 020605 (2013).

3. H. Dong, J. Wu, and G. Zhang, Chin. Opt. Lett. 7, 23 (2009).

4. Y. J. Rao, A. B. Lobo Ribeiro, D. A. Jackson, L. Zhang, and I. Bennion, Opt. Lett. 20, 2149 (1995).

5. J. Liu, J. Zhang, X. Li, and Z. Zheng, Chin. J. Aeronautics (in Chinese) 24, 607 (2011).

6. X. Zhang, Z. Meng, and Z. Hu, Chin. Opt. Lett. 9, 110601 (2011).

7. Y. Zhan, S. Xue, and Q. Yang, Chin. Opt. Lett. 5, 135 (2007).

8. B. Soller, D. Gifford, M. Wolfe, and M. Froggatt, Opt. Express 13, 666 (2005).

9. M. Froggatt and J. Moore, App. Opt. 37, 1741 (1998).

10. H. Igawa, K. Ohta, T. Kasai, I. Yamaguchi, H. Murayama, and K. Kageyama, J. Solid Mech. Mater. Eng. 2, 1242 (2008).

11. T. Erdogan, J. Lightwave Technol. 15, 1277 (1997).

12. M. Yamada and K. Sakuda, App. Opt. 26, 3474 (1987).

13. G. Wang and Y. Wang, Chin. Opt. Lett. 9, 090605 (2011).

14. M. A. Davis and A. D. Kersey, J. Lightwave Technol. 13, 1289 (1995).

15. L. Lv, Y. Song, F. Zhu, and X. Zhang, Chin. Opt. Lett. 10, 040604 (2012).


Save this article's abstract as
Copyright©2018 Chinese Optics Letters 沪ICP备05015387