2018-08-19 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 09 , Vol. 11 , 2013    10.3788/COL201311.093001

Nonlinear and saturable absorption properties of PbS nanocrystalline thin films
Mustafa Yuksek1, Huseyin Ertap2, Mevlut Karabulut2, Gasan M. Mamedov2
1 Department of Electrical-Electronics Engineering, Engineering and Architecture Faculty, [Kafkas University], 36100 Kars Turkey
2 Department of Physic, Science and Art Faculty, [Kafkas University], 36100 Kars Turkey

Chin. Opt. Lett., 2013, 11(09): pp.093001

Keywords(OCIS Code): 300.1030  310.6860  

The structural, morphological, optical, and nonlinear optical properties of a lead sulfide (PbS) thin film grown by chemical bath deposition (CBD) are investigated by X-ray diffraction (XRD), scanning electron microscope (SEM), ultraviolet-visible (UV-Vis), and open aperture Z-scan experiments. The band gap energy of the PbS nanocrystalline film is 1.82 eV, higher than that of bulk PbS at 300 K. The nonlinear absorption properties of the film are investigated using the open aperture Z-scan technique at 1064 nm and pulse durations of 4 ns and 65 ps. Intensity-dependent switching of the film from nonlinear absorption to saturable absorption is observed. The nonlinear absorption coefficient increases monotonically with increasing pulse duration from 65 ps to 4 ns.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (265 KB)


Posted online:2013/9/3

Get Citation: Mustafa Yuksek, Huseyin Ertap, Mevlut Karabulut, Gasan M. Mamedov, "Nonlinear and saturable absorption properties of PbS nanocrystalline thin films," Chin. Opt. Lett. 11(09), 093001(2013)



1. J. L. Machol, F. W. Wise, R. C. Patel, and D. B. Tanner, Phys. Rev. B 48, 2819 (1993).

2. P. K. Nair, O. Gomezdaza, and M. T. S. Nair, Adv. Mater. Opt. Electron. 1, 139 (1992).

3. I. Pop, C. Nascu, V. Ionescu, E. Indrea, and I. Bratu, Thin Solid Films 307, 240 (1997).

4. P. K. Nair, V. M. Garcia, A. B. Hernandez, and M. T. S. Nair, J. Phys. D Appl. Phys. 24, 1466 (1991).

5. P. Gadenne, Y. Yagil, and G. Deutscher, J. Appl. Phys. 66, 3019 (1989).

6. R. S. Kane, R. E. Cohen, and R. Silbey, J. Phys. Chem. 100, 7928 (1996).

7. Y. Wang, Acc. Chem. Res. 24, 133 (1991).

8. H. P. Li, B. Liu, C. H. Kam, Y. L. Lam, W. X. Que, L. M. Gan, C. H. Chew, and G. Q. Xu, Opt. Mater. 14, 321 (2000).

9. B. Liu, H. Li, C. H. Chew, W. Que, Y. L. Lam, C. H. Kam, L. M. Gan, and G. Q. Xu, Mater. Lett. 51, 461 (2001).

10. R. Thielsch, T. Bohme, R. Reiche, D. Schlafer, H. D. Bauer, and H. Bottcher, Nanostruct. Mater. 10, 131 (1998).

11. K. K. Nanda, F. E. Kruis, H. Fissan, and M. Acet, J. Appl. Phys. 91, 2315 (2002).

12. D. Li, C. Liang, Y. Liu, and S. Qian, J. Lumin. 122-123, 549 (2007).

13. K. L. Chopra and I. Kaur, Thin Film Device Applications (Plenum Press, New York, 1983).

14. G. Micocci, A. Serra, and A. Tepore, J. Appl. Phys. 82, 2365 (1997).

15. J. F. Sanchez-Royo, D. Errandonea, A. Segura, L. Roa, and A. Chevy, J. Appl. Phys. 83, 4750 (1998).

16. S. Shigetomi, T. Ikari, and H. Nakashima, J. Appl. Phys. 80, 4779 (1996).

17. G. M. Mamedov, M. Karabulut, A. O. Kodolbas, and O. Oktu, Phys. Stat. Solid. B 242, 2885 (2005).

18. A. J. Almosawe and H. L. Saadon, Chin. Opt. Lett. 11, 041902 (2013).

19. M. Dezhkam and A. Zakery, Chin. Opt. Lett. 10, 121901 (2012).

20. Y. Fan, Z. Jiang, and L. Yao, Chin. Opt. Lett. 10, 071901 (2012).

21. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, IEEE J. Quantum Electron. 26, 760 (1990).

22. J. I. Pankove, Optical Process in Semiconductors (Courier Dover Publications, New York, 1971).

23. B. Gu, Y. X. Fan, J. Chen, H. T. Wang, J. He, and W. Ji, J. Appl. Phys. 102, 083101 (2007).

24. M. Yuksek, U. Kurum, H. Gul Yaglioglu, A. Elmali, and A. Ates, J. Appl. Phys. 107, 033115 (2010).

25. U. Kurum, M. Yuksek, H. Gul Yaglioglu, A. Elmali, A. Ates M. Karabulut, and G. M. Mamedov, J. Appl. Phys. 108, 063102 (2010).

26. G. Adomian, Solving Frontier Problems of Physics: The Decomposition Method (Springer, 1994).

27. B. Gu, Y. X. Fan, J. Wang, J. Chen, J. P. Ding, H. T. Wang, and B. Guo, Phys. Rev. A 73, 065803 (2006).

Save this article's abstract as
Copyright©2018 Chinese Optics Letters 沪ICP备05015387