2018-08-19 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 09 , Vol. 11 , 2013    10.3788/COL201311.091401

High efficiency beam combination of 4.6-\mu m quantum cascade lasers
Hao Wu1, Lijun Wang2, Fengqi Liu2, Hangyu Peng1, Jun Zhang1, Cunzhu Tong1, Yongqiang Ning1, Lijun Wang1
1 [Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences], Changchun 130033, China
2 [Institute of Semiconductors, Chinese Academy of Sciences], Beijing 100083, China

Chin. Opt. Lett., 2013, 11(09): pp.091401

Topic:Lasers and laser optics
Keywords(OCIS Code): 140.5965  140.3300  140.3298  

The quantum cascade laser (QCL), a potential laser source for mid-infrared applications, has all of the advantages of a semiconductor laser, such as small volume and light weight, and is driven by electric power. However, the optical power of a single QCL is limited by serious self-heating effects. Therefore, beam combination technology is essential to achieve higher laser powers. In this letter, we demonstrate a simple beam combination scheme using two QCLs to extend the output peak power of the lasers to 2.3 W. A high beam combination efficiency of 89% and beam quality factor of less than 5 are also achieved.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (1044 KB)


Posted online:1900/1/1

Get Citation: Hao Wu, Lijun Wang, Fengqi Liu, Hangyu Peng, Jun Zhang, Cunzhu Tong, Yongqiang Ning, Lijun Wang, "High efficiency beam combination of 4.6-\mu m quantum cascade lasers," Chin. Opt. Lett. 11(09), 091401(2013)

Note: This work was supported by the National Natural Science Foundation of China (Nos. 61076064 and 61176046), the International Science Technology Cooperation Program of China (No. 2013DFR00730), and the Hundred Talents Program of Chinese Academy of Sciences for their financial support.


1. R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, Chem. Phys. Lett. 487, 1 (2010).

2. A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, Appl. Phys. B 90, 165 (2008).

3. D. D. Nelson, J. H. Shorter, J. B. McManus, and M. S. Zahniser, Appl. Phys. B 75, 343 (2002).

4. F. Capasso, Opt. Eng. 49, 111102 (2010).

5. M. Razeghi, Y. B. Bai, S. Slivken, and S. R. Darvish, Opt. Eng. 49, 11103 (2010).

6. Y. B. Bai, S. Slivken, S. Kuboya, S. R. Darvish, and M. Razeghi, Nat. Photonics 4, 99 (2010).

7. J. Zhang, H. Peng, X. Fu, Y. Liu, L. Qin, G. Miao, and L. Wang, Opt. Express 21, 3627 (2013).

8. R. K. Huang, B. Chann, J. Burgess, M. Kaiman, R. Overman, J. D. Glenn, and P. Tayebati, Proc. SPIE 8241, 824102 (2012).

9. S. Hugger, F. Fuchs, R. Aidam, W. Bronner, R. Loesch, Q. Yang, N. Schulz, J. Wagner, E. Romasew, M. Raab, and H. D. Tholl, Proc. SPIE 7325, 73250H (2009).

10. J. Montoya, S. J. Augst, K. Creedon, J. Kansky, T. Y. Fan, and A. Sanchez-Rubio, Appl. Opt. 51, 1724 (2012).

11. G. Bloom, C. Larat, E. Lallier, G. Lehoucq, S. Bansropun, M.-S. L. Lee-Bouhours, B. Loiseaux, M. Carras, X. Marcadet, G. Lucas-Leclin, and P. Georges, Opt. Lett. 36, 3810 (2011).

12. B. G. Lee, J. Kansky, A. K. Goyal, C. Pflugl, L. Diehl, M. A. Belkin, A. Sanchez, and F. A. Capasso, Opt. Express 17, 16216 (2009).

13. Z. Su, Z. Ji, L. Que, and Z. Zhu, Chin. Opt. Lett. 10, 101402 (2012).

14. X.Wang, Q. Fu, L. Huang, F. Shen, and C. Rao, Chin. Opt. Lett. 10, 081402 (2012).

Save this article's abstract as
Copyright©2018 Chinese Optics Letters 沪ICP备05015387