2018-10-20 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 09 , Vol. 11 , 2013    10.3788/COL201311.090603


Effective SNR improvement using a high-power pulsed pump in an ytterbium-doped fiber amplifier
Jing Liu, Lixin Xu, Anting Wang, Chun Gu, Qing Liu, Ankun Wei, Teng Xu, Hai Ming
Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Optics and Optical Engineering, [University of Science and Technology of China], Hefei 230026, China

Chin. Opt. Lett., 2013, 11(09): pp.090603

DOI:10.3788/COL201311.090603
Topic:Fiber optics and optical communications
Keywords(OCIS Code): 060.2320  140.4480  

Abstract
A high-power pulsed pump method is proposed to obtain a high-energy output with an improved signaltonoise ratio (SNR) during pulse amplification. Based on numerical analysis, the ytterbium-doped fiber amplifiers are compared under different pumping conditions. At the same signal gain, the output using the high-power pulsed pump shows great SNR improvement and reduced output signal distortion, compared with a continuous-wave pump and a low-power pulsed pump. By adjusting the pump parameters, the amplifier can achieve the optimal output SNR without sacrificing the signal gain. We believe that the high-power pulsed pump scheme is very suitable for the high-energy nanosecond pulse amplification, which has a high SNR requirement.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (545 KB)

Share:


Received:2013/5/4
Accepted:2013/7/12
Posted online:2013/8/30

Get Citation: Jing Liu, Lixin Xu, Anting Wang, Chun Gu, Qing Liu, Ankun Wei, Teng Xu, Hai Ming, "Effective SNR improvement using a high-power pulsed pump in an ytterbium-doped fiber amplifier," Chin. Opt. Lett. 11(09), 090603(2013)

Note:



References

1. P. Jiang, D. Yang, Y. Wang, T. Chen, B. Wu, and Y. Shen, Laser Phys. Lett. 6, 384 (2009).

2. C. Ye, P. Yan, M. Gong, and M. Lei, Chin. Opt. Lett. 3, 249 (2005).

3. M. D. Mermelstein, in Proceedings of Optical Amplif iers and Their Applications/Coherent Optical Technologies and Applications OMC2 (2006).

4. X. Huang, B. Guo, W. Yang, G. Chen, X. Gong, Y. Kong, D. Li, X. Li, Z. Sui, M. Li, and J. Wang, Chin. Opt. Lett. 7, 712 (2009).

5. Y. Kong, Q. Liu, C. Deng, F. Tian, and X. Huang, J. Modern Opt. 56, 597 (2009).

6. W. Cheng, H. Zhang, M. Liu, C. Zheng, P. Yan, and M. Gong, J. Opt. 13, 085204 (2011).

7. P. Wan, J. Liu, L. Yang, and F. Amzajerdian, Opt. Express 19, 18067 (2011).

8. H. Kalaycioglu, K. Eken, and F. O Ilday, Opt. Lett. 36, 3383 (2011).

9. C. Zheng, H. Zhang, P. Yan, and M. Gong, Opt. Laser Technol. 49, 284 (2013).

10. T. Wei, J. Li, and J. Zhu, Chin. Opt. Lett. 10, 040605 (2012).

11. W. Zhang, J. Ning, and B. Chen, Adv. Mater. Res. 403, 2508 (2012).

12. W. Yong and P. Hong, J. Lightwave Technol. 21, 2262 (2003).

13. R. LeVeque, Finite Dif ference Methods for Ordinary and Partial Dif ferential Equations: Steady-State and Timedependent Problems (Society for Industrial and Applied Mathematics, Philadelphia, 2007).

14. R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, IEEE J. Quantum Electron. 33, 1049 (1997).

15. O. Svelto, Principles of lasers (Springer, Berlin, 2009).

16. J. Boullet, R. Dubrasquet, C. Medina, R. Bello-Doua, N. Traynor, and E. Cormier, Opt. Lett. 35, 1650 (2010).


Save this article's abstract as
Copyright©2018 Chinese Optics Letters 沪ICP备05015387