2019-02-19 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 03 , Vol. 11 , 2013    10.3788/COL201311.030603

Phase-modulation-combination system for the generation of arbitrarily shaped repetition rate pulses
Shiwei Wang, Jun Zheng, Jianqiu Xu
Key Laboratory for Laser Plasmas (Ministry of Education) and Department of Physics, [Shanghai Jiao Tong University], Shanghai 200240, China

Chin. Opt. Lett., 2013, 11(03): pp.030603

Topic:Fiber optics and optical communications
Keywords(OCIS Code): 060.5060  060.2280  140.3538  

We propose a new phase-modulation-combination system for the generation of arbitrarily shaped repetition rate pulses. In this system, the pulses from two electro-optic switches are modulated and interferentially combined, thereby improving the shaping resolution and narrowing the pulse width. This method allows the arbitrary tuning of pulse width, repetition rate, and temporal profile in an all-fiber configuration. The system is compatible with and can be easily embedded in other systems to achieve higher pulse energy and higher pulse repetition rate.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (415 KB)


Posted online:2013/2/28

Get Citation: Shiwei Wang, Jun Zheng, Jianqiu Xu, "Phase-modulation-combination system for the generation of arbitrarily shaped repetition rate pulses," Chin. Opt. Lett. 11(03), 030603(2013)

Note: The authors would like to thank Jie Ma from our laboratory for his kind and helpful advices. This work was supported by the National Natural Science Foundation of China under Grant Nos. 61138006 and 10905039.


1. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, Rev. Sci. Instrum. 78, 351071(2007).

2. S. T. Cundiff, Nature 450, 1175 (2007).

3. W. H. Knox, IEEE J. Sel. Top. Quantum Electron. 6,1273 (2000).

4. X. Yu, H. A. Haus, E. P. Ippen, W. S. Wong, and A. Sysoliatin, Opt. Lett. 25, 1418 (2000).

5. T. M. Fortier, A. Bartels, and S. A. Diddams, Opt. Lett. 31, 1011 (2006).

6. D. Kim, J. N. Kutz, and D. J. Muraki, IEEE J. Sel. Top. Quantum Electron. 36, 465 (2000).

7. U. Keller, Nature 424, 831 (2003).

8. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, Nat. Photon. 4, 611 (2010).

9. Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, Adv. Funct. Mater. 19, 3077 (2009).

10. Y. Dai and C. Xu, Opt. Express 17, 6584 (2009).

11. J. van Home, J. H. LEE, and C. Xu, Opt. Lett. 32, 1408 (1999).

12. T. Khayim and M. Yamauchi, Quantum Electron. 35, 1412 (1999).

13. Y. Wang, J. Wang, Y. Jiang, Y. Bao, X. Li, and Z. Lin, Chin. Opt. Lett. 6, 841 (2008).

14. R. Xin and J. D. Zuegel, Opt. Lett. 36, 2605 (2011).

15. R. Xin and J. D. Zuegel, in Proceedings of ASSP 2010 AMD3 (2010).

16. H. N. Tan, Q. Nguyen-The, M. Matsuura, and N. Kishi, J. Lighwave Technol. 30, 853 (2012).

Save this article's abstract as
Copyright©2018 Chinese Optics Letters 沪ICP备15018463号-7 公安备案沪公网安备 31011402005522号