2017-11-22 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 11 , Vol. 10 , 2012    10.3788/COL201210.112301

Wide band polarizer with suspended germanium resonant grating
Wugang Cao1;2, Jianyong Ma1, Changhe Zhou1
1 [Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences], Shanghai 201800, China
2 [Graduate University of Chinese Academy of Sciences], Beijing 100049, China

Chin. Opt. Lett., 2012, 10(11): pp.112301

Topic:Optical devices
Keywords(OCIS Code): 230.0230  230.5440  

An ultra broad band polarizer that operates in the telecommunication wavelength band is proposed. This device, which consists of a single suspended germanium resonant grating layer, is designed using the inverse mathematical method and the rigorous vector diffraction theory. Calculated results indicate that the ultra broad band polarizer exhibits extremely high reflection (R>99%) for TE polarization light and high transmission (T>99%) for TM polarization at the wavelength range greater than 300 nm, and it has an extinction ratio of approximately 1 000 at the 1 550-nm central wavelength. The results of the rigorous coupled wave analysis indicate that the extremely wide band property of the TE polarization is caused by the excitation of strong modulation guided modes in the design wavelength range.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (0 KB)


Posted online:2012/9/28

Get Citation: Wugang Cao, Jianyong Ma, Changhe Zhou, "Wide band polarizer with suspended germanium resonant grating," Chin. Opt. Lett. 10(11), 112301(2012)

Note: This work was supported by the Natural Science Foundation of Shanghai Committee of Science and Technology under Grant No. 10ZR1433500.


1. T. Weber, T. Kasebier, E. B. Kley, and A. Tunnermann, Opt. Lett. 36, 445 (2011).

2. L. Li and J. A. Dobrowolski, Appl. Opt. 39, 2754 (2000).

3. M. Bass, Handbook of Optics (McGraw-Hill, New York, 1995).

4. C. M. de Sterke, C. J. van der Laan, and H. J. Frankena, Appl. Opt. 22, 595 (1983).

5. D. Delbeke, R. Baets, and P. Muys, Appl. Opt. 43, 6157 (2004).

6. R. C. Tyan, A. A. Salvekar, H. P. Chou, C. C. Cheng, A. Scherer, P. C. Sun, F. Xu, and Y. Fainman, J. Opt. Soc. Am. A 14, 1627 (1997).

7. Y. Ding and R. Magnusson, Opt. Express 12, 1885 (2004).

8. K. J. Lee, R. LaComb, B. Britton, M. Shokooh-Saremi, H. Silva, E. Donkor, Y. Ding, and R. Magnusson, IEEE Photon. Technol. Lett. 20, 1857 (2008).

9. T. Kobayashi, Y. Kanamori, and K. Hane, Appl. Phys. Lett. 87, 151106 (2005).

10. K. J. Lee, J. Curzan, M. Shokooh-Saremi, and R. Magnusson, Phys. Lett. 98, 211112 (2011).

11. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, J. Opt. Soc. Am. A 12, 1068 (1995).

12. M.-L. Wu, C.-L. Hsu, Y.-C. Liu, C.-M. Wang, and J.-Y. Chang, Opt. Lett. 31, 3333 (2006).

13. J.-S. Ye, Y. Kanamori, F.-R. Hu, and K. Hane, Opt. Commun. 270, 233 (2006).

14. M. Shokooh-Saremi and R. Magnusson, Opt. Express 16, 18249 (2008).

Save this article's abstract as
Copyright©2014 Chinese Optics Letters 沪ICP备05015387