2017-11-22 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 11 , Vol. 10 , 2012    10.3788/COL201210.111301

Compact beam splitters based on self-imaging phenomena in one-dimensional photonic crystal waveguides
Bing Chen1, Lin Huang1, Yongdong Li1, Chunliang Liu1, Guizhong Liu2
1 Key Laboratory of Physical Electronics and Devices of the Ministry of Education, [Xi'an Jiaotong University], Xi'an 710049, China
2 Institute of Information and Communication Engineering, [Xi'an Jiaotong University], Xi'an 710049, China

Chin. Opt. Lett., 2012, 10(11): pp.111301

Topic:Integrated optics
Keywords(OCIS Code): 130.5296  230.1360  130.3120  

A fundamental 1 \times 2 beam splitter based on the self-imaging phenomena in multi-mode one-dimensional (1D) photonic crystal (PC) waveguides is presented, and its transmission characteristics are investigated using the finite-difference time-domain method. Calculated results indicate that a high transmittance (>95%) can be observed within a wide frequency band for the 1 \times 2 beam splitter without complicated structural optimizations. In this letter, a simple and compact 1 \times 4 beam splitter is constructed by combining the fundamental 1 \times 2 beam splitter with the flexible bends of 1D PC waveguides. Such beam splitters can be applied to highly dense photonic integrated circuits.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (1011 KB)


Posted online:2012/9/14

Get Citation: Bing Chen, Lin Huang, Yongdong Li, Chunliang Liu, Guizhong Liu, "Compact beam splitters based on self-imaging phenomena in one-dimensional photonic crystal waveguides," Chin. Opt. Lett. 10(11), 111301(2012)

Note: This work was supported by the National Natural Science Foundation of China (No. 61007027) and the Fundamental Research Funds for Central Universities, China.


1. S. Fan, S. G. Johnson, J. D. Joannopoulos, C. Manolatou, and H. A. Haus, J. Opt. Soc. Am. B 18, 162 (2001).

2. J. S. Jensen and O. Sigmund, J. Opt. Soc. Am. B 22, 1191 (2005).

3. L. H. Frandsen, P. I. Borel, Y. X. Zhuang, A. Harpoth, M. Thorhauge, M. Kristensen, W. Bogaerts, P. Dumon,R. Baets, V. Wiaux, J. Wouters, and S. Beckx, Opt. Lett. 29, 1623 (2004).

4. A. Tetu, M. Kristensen, LH Frandsen, A. Harpoth, P. I Borel, J. S. Jensen, and O. Sigmund, Opt. Express 13, 8606 (2005).

5. A. Martinez, F. Cuesta, and J. Marti, IEEE Photon. Technol. Lett. 15, 694 (2003).

6. I. Park, H. S. Lee, H. J. Kim, K. M. Moon, S. G. Lee, B.H. O, S. G. Park, and E. H. Lee, Opt. Express 12, 3599 (2004).

7. A. Ghaffari, M. Djavid, and M. S. Abrishmian, Appl. Opt. 48, 1606 (2009).

8. T. Liu, A. R. Zakharian, M. Fallahi, and M. Mansuripur, J. Lightwave Technol. 22, 2842 (2004).

9. M. Zhang, R. Malureanu, A. C. Kruger, and M. Kristensen, Opt. Express 18, 14944 (2010).

10. M. Zhang, A. C. Kruer, N. Groothoff, T. Balle, and M. Kristensen, Opt. Lett. 36, 3058 (2011).

11. B. Chen, T. Tang, Z. Wang, H. Chen, and Z. Liu, Appl. Phys. Lett. 93, 1811071 (2008).

12. B. Chen, T. Tang, and H. Chen, Opt. Express 17, 5033 (2009).

13. B. Chen, L. Huang, Y. Li, C. Liu, and G. Liu, J. Opt. Soc. Am. B 28, 2680 (2011).

14. S. G. Johnson and J. D. Joannopoulos, Opt. Express 8, 173 (2001).

15. L. B. Soldano and E. C. M. Pennings, J. Lightwave Technol. 13, 615 (1995).

16. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Dif ference Time Domain Method (Artech House, Boston, 2000).

Save this article's abstract as
Copyright©2014 Chinese Optics Letters 沪ICP备05015387