2018-10-19 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 11 , Vol. 10 , 2012    10.3788/COL201210.110604

Temperature dependence of radiation-induced attenuation of optical f ibers
Jingming Song, Jianhua Guo, Xueqin Wang, Jing Jin
School of Instrumentation Science and Opto-electronics Engineering, [Beihang University], Beijing 100191, China

Chin. Opt. Lett., 2012, 10(11): pp.110604

Topic:Fiber optics and optical communications
Keywords(OCIS Code): 060.2310  350.5610  120.6780  060.2370  060.2400  

We investigate the temperature dependence of radiation-induced attenuation (RIA) at 1 310 nm for a Ge/P co-doped fiber after a steady-state \gamma -ray irradiation. A irradiation facility 60Co source is used to irradiate the fiber at a dose rate of 0.5 Gy/min, satisfying a total dose of 100 Gy. The test temperature ranges from –40 to 60 oC by 20 oC, and the RIA of the fiber is obtained using a power measuring device. The experimental result demonstrates that RIA exhibits a steady, monotonic, and remarkable temperature dependence after approximately 48 h of accelerated annealing at 70 oC. The optical fiber irradiated with a high dose and annealed sufficiently can be used as a temperature sensor.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (326 KB)


Posted online:2012/9/28

Get Citation: Jingming Song, Jianhua Guo, Xueqin Wang, Jing Jin, "Temperature dependence of radiation-induced attenuation of optical f ibers," Chin. Opt. Lett. 10(11), 110604(2012)

Note: This work was supported by the National Natural Science Foundation of China (No. 61007040). We would also like to thanks Professors Li Jiuqiang and Sun Deliang for their help in the irradiation experiments.


1. X. Wang, C. Zhang, J. Jin, and N. Song, Chin. Opt. Lett. 9, 060601(2011).

2. J. Jin, H. Xu. D. Ma, S. Lin, and N. Song, Opt. Lasers Eng. 50, 958 (2012).

3. S. Girard, M. Vivona, A. Laurent, B. Cadier, C. Marcandella, T. Robin, E. Pinsard, A. Boukenter, and Y. Ouerdane, Opt. Express 20, 8457 (2012).

4. J. Ma, M. Li, L. Tan, Y. Zhou, S. Yu, and C. Che, Optik 121, 535 (2010).

5. F. Berghmans, B. Brichard, A. Fernandez, A. Gusarov, M. Van Uffelen, and S. Girard, in Proceedings of Optical Waveguide Sensing and Imaging 127 (2008).

6. D. L. Griscom, J. Non-Crystalline Solids 357, 1945 (2010).

7. S. Girard, J. Keurinck, Y. Ouerdane, J.-P. Meunier, and A. Boukenter, J. Lightwave Technol. 22, 1915 (2004).

8. E. Regnier, I. Flammer, S. Girard, F. Gooijer, F. Achten, and G. Kuyt, IEEE Trans. Nucl. Sci. 54, 1115 (2007).

9. P. Borgermans and B. Brichard, IEEE Trans. Nucl. Sci. 49, 1439 (2002).

10. M. Lezius, K. Predehl, W. Stower, A. Turler, M. Greiter, Ch. Hoeschen, P. Thirolf, W. Assmann, D. Habs, A. Prokofiev, C. Ekstr¨om, T. W. H¨asch, and R. Holzwarth, IEEE Trans. Nucl. Sci. 59, 425 (2012).

11. D. L. Griscom, E. J. Friebele, K. J. Long, and J. W. Fleming, J. Appl. Phys. 54, 3743 (1983).

12. M. C. Paul, D. Bohra, A. Dhar, R. Sen, P. K. Bhatnagan, and K. Dasgupta, J. Non-Crystalline Solids 355, 1496 (2009).

13. S. Girard, Y. Ouerdane, C. Marcandella, A. Boukenter, S. Quenard, and N. Authier, J. Non-Crystalline Solids 357, 1871 (2011).

14. D. L. Griscom, Opt. Mater. Express 1, 400 (2011).

15. E. V. Anoikin, V. M. Mashinsky, V. B. Neustruev, and Y. S. Sidorin, J. Non-Crystalline Solids 179, 243 (1994).

Save this article's abstract as
Copyright©2018 Chinese Optics Letters 沪ICP备05015387