2019-02-19 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 01 , Vol. 10 , 2012    10.3788/COL201210.010603

High power dual-wavelength tunable fiber laser in linear and ring cavity configurations
H. Ahmad1, A. A. Latif1, M. Z. Zulkifli1, N. A. Awang1, S. W. Harun2
1 Photonics Laboratory, Department of Physics, [University of Malaya], 50603 Kuala Lumpur, Malaysia
2 Department of Electrical Engineering, Faculty of Engineering, [University of Malaya], 50603 Kuala Lumpur, Malaysia

Chin. Opt. Lett., 2012, 10(01): pp.010603

Topic:Fiber optics and optical communications
Keywords(OCIS Code): 060.2320  060.2410  060.3510  

We describe and compare the performances of two crucial configurations for a tunable dual-wavelength fiber laser, namely, the linear and ring configurations. The performances of these two cavities and the tunability in the dual-wavelength output varied from 0.8 to 11.9 nm are characterized. The ring cavity provides a better performance, achieving an average output power of 0.5 dBm, with a power fluctuation of only 1.1 dB and a signal-to-noise ratio (SNR) of 66 dB. Moreover, the ring cavity has minimal or no background amplified spontaneous emission (ASE).

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (1276 KB)


Posted online:2011/8/30

Get Citation: H. Ahmad, A. A. Latif, M. Z. Zulkifli, N. A. Awang, S. W. Harun, "High power dual-wavelength tunable fiber laser in linear and ring cavity configurations," Chin. Opt. Lett. 10(01), 010603(2012)



1. M. Tadakuma, O. Aso, and S. Namiki, in Proceedings of OFC02000 178 (2000).

2. A. J. Ruggiero, M. W. Bowers, and R. A. Young, in Proceedings of CLEO' 99 523 (1999).

3. L. Xia, P. Shum, and T. H. Cheng, Appl. Phys. B 86, 61 (2007).

4. D. Liu, N. Q. Ngo, G. Ning, P. Shum, and S. C. Tjin, Opt. Commun. 266, 240 (2006).

5. S. Yamashita and K. Hotate, IEEE Photon. Technol. Lett. 32, 1298 (1996).

6. N. Park and P. F. Wysoncki, IEEE Photon. Technol. Lett. 8, 1459 (1996).

7. G. Das and J. W. Y. Lit, IEEE Photon. Technol. Lett. 14, 606 (2002).

8. S. Feng, O. Xu, S. Lu, T. Ning, and S. Jian, Opt. Commun. 282, 825 (2009).

9. A. Bellemare, M. Karasek, M. Rochette, S. L. Rochelle, and M. Tetu, J. Lightwave Technol. 18, 825 (2000).

10. J. Sun, Y. Dai, X. Feng, Y. Zhang, and S. Xie, IEEE Photon. Technol. Lett. 18, 2587 (2006).

11. M. P. Fok and C. Shu, Opt. Express 15, 5925 (2007).

12. C. H. Yeh, C. W. Chow, F. Y. Shih, C. H. Wang, Y. F. Wu, and S. Chi, IEEE Photon. Technol. Lett. 21 (2009).

13. C. H. Yeh, Opt. Express 15, 13844 (2007).

14. D. Liu, N. Q. Ngo, X. Y. Dong, S. C. Tjin, and P. Shum, Appl. Phys. B 81, 807 (2005).

15. X. He, X. Fang, C. Liao, D. N. Wang, and J. Sun, Opt. Express 17, 21773 (2009).

16. J. Nilsson, Y. W. Lee, and S. J. Kim, IEEE Photon. Technol. Lett. 8, 1630 (1996).

17. X. Chen, Z. Deng, and J. Yao, IEEE Transact. on Microwave Theory and Techniques 54, 804 (2006).

18. S. Pan and J. Yao, Opt. Express 17, 12167 (2009).

19. D. Z. Hsu, S. L. Lee, P. M. Gong, Y. M. Lin, S. S. W. Lee, and M. C. Yuang, IEEE Photonics Tech. Lett. 16, 1903 (2004).

20. Y. Yao, X. Chen, Y. Dai, and S. Xie, IEEE Photon. Technol. Lett. 18, 187 (2006).

21. I. Park, I. Fisher, and W. Elsaber, in Proceedings of CLEO/ Europe'2003 (2003).

Save this article's abstract as
Copyright©2018 Chinese Optics Letters 沪ICP备15018463号-7 公安备案沪公网安备 31011402005522号