2018-08-19 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue s1 , Vol. 09 , 2011    10.3788/COL201109.s10309

Improvement methods of reflective photocathode QE of X-ray frame camera
Xiaohong Bai1;2, Yonglin Bai1, Zhurong Cao3, Junping Zhao1, Baiyu Liu1, Junjun Qin1, Bo Wang1;2, Wenzheng Yang1, Yongsheng Gou1, Xianouyang1
1 [Xi'an Institute of Optics and Precision Mechanics of CAS], Xi'an 710119, China
2 [Graduate University of Chinese Academy of Science], Beijing 100049, China
3 [Institute of Nuclear Physics and Chemistry, Chinese Academy of Engineering Physics], Mianyang 621900, China

Chin. Opt. Lett., 2011, 09(s1): pp.s10309

Topic:High Speed Diagnostics, Image Processing, and Data Analysis
Keywords(OCIS Code): 310.6870  040.7480  040.5160  020.4180  

Time-resolved diagnosis of the transient process using X-ray frame cameras (XRCs) is an important means in inertial confinement fusion (ICF) experiments. The sensitivity of the photocathode is a key parameter of the entire camera system. This letter aims to raise the quantum efficiency (QE) of the photocathode. With the changes in the deposition parameters, such as deposit angle, thickness of the coating in the channel, and vacuum of evaporation, the QE results are different. After testing and theoretical calculation, we find that there is a best matching value among these parameters. When the coating parameter meet this best value, the gain of the XRC can be improved significantly.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (2006 KB)


Posted online:2011/6/29

Get Citation: Xiaohong Bai, Yonglin Bai, Zhurong Cao, Junping Zhao, Baiyu Liu, Junjun Qin, Bo Wang, Wenzheng Yang, Yongsheng Gou, Xianouyang, "Improvement methods of reflective photocathode QE of X-ray frame camera," Chin. Opt. Lett. 09(s1), s10309(2011)

Note: This work was also supported by the National Defense Innovation Program of Chinese Academy of Sciences (No. 10905090) and the Innovation Foundation of Chinese Academy of Sciences (No. CXJJ-09-018).


1. Z. Chang, B. Shan, X. Liu, H. Yang, W. Zhu, and Y. Liu, Acta. Photon. Sin. (in Chinese) 24, 501 (1995).

2. T. Hara, Y. Tanaka, H. Kitamura, and T. Ishikawa, Rev. Sci. Instrum. 71, 3624 (2000).

3. M. P. Kowalski, G. G. Fritz, R. G. Cruddace, A. E. Unzicker, and N. Swanson, Appl. Opt. 25, 2440 (1986).

4. C. J. Pawley and A. V. Deniz, Rev. Sci. Instrum. 71, 1286 (2000).

5. G. Power and R. Bonner, Proc. SPIE 1155, 439 (1989).

6. O. L. Landen, A. Lobban, T. Tutt, P. M. Bell, R. Costa, D. R. Hargrove, and F. Ze, Rev. Sci. Instrum. 72, 709 (2001).

7. A. V. Antonov, V. V. Apanasovich, and E. G. Novikov, Proc. SPIE 2859, 281 (1989).

8. B. Shan, Z. H. Chang, J. Y. Liu, X. Q. Liu, S. S. Gao, Y. L. Ren, W. H. Zhu, Y. M. Luo, J. X. Cheng, C. B. Yang, T. S. Wen, D. Y. Tang, S. H. Wen, and Z. J. Zheng, Proc. SPIE 2869, 182 (1997).

9. Y. S. Zou, Electron Imaging Tube and Theory Analyses (National Industry Press, Beijing, 1989).

10. E. C. Harding and R. P. Drake, Rev. Sci. Instrum. 77, 10E312 (2006).

11. K. Premaratne, E. R. Dietz, and B. L. Henke, Nucl. Instrum. Meth. Phys. Res. 207, 465 (1980).

Save this article's abstract as
Copyright©2018 Chinese Optics Letters 沪ICP备05015387