2018-04-27 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue s1 , Vol. 09 , 2011    10.3788/COL201109.s10303

Diagnostics of air plasma ablated by 1064 nm laser pulses
Wenfeng Luo, Wei Zhao, Yixiang Duan, Haojing Wang
State Key Laboratory of Transient Optics and Photonics, [Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences], Xi'an 710119, China

Chin. Opt. Lett., 2011, 09(s1): pp.s10303

Topic:High Speed Diagnostics, Image Processing, and Data Analysis
Keywords(OCIS Code): 020.0020  140.0140  300.0300  

The characteristics of air plasma are studied using laser-induced breakdown spectroscopy at room temperature in air at atmospheric pressure. The electron temperature of 20796 K is determined using the Boltzmann plot method with six ionic nitrogen lines at 444.703, 463.054, 500.515, 566.663, 594.165, and 648.205 nm. The electron number density inferred by measuring the Stark broadened profile of well-isolated Hα line (656.273 nm) is 1.83 £ 1017 cm?3. The hypotheses of the local thermodynamic equilibrium and optically thin plasma are verified based on the experimental results. These results are beneficial for better understanding of the terahertz (THz) wave generation in pulsed laser induced air plasma.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (401 KB)


Posted online:2011/6/27

Get Citation: Wenfeng Luo, Wei Zhao, Yixiang Duan, Haojing Wang, "Diagnostics of air plasma ablated by 1064 nm laser pulses," Chin. Opt. Lett. 09(s1), s10303(2011)

Note: This work was supported by the Chinese Academy of Sciences/State Administration of Foreign Experts Affairs. International Partnership Program for Creative Research Teams.


1. C. Aragon and J. A. Aguilera, Spectrochim. Acta Part B 63, 893 (2008).

2. L. Wang, C. J. Zhang, and Y. Feng, Chin. Opt. Lett. 6, 5 (2008).

3. D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (John Wiley and Sons, Chichester, 2006).

4. J. P. Singh, and S. N. Thakur, Laser-Induced Breakdown Spectroscopy (Elsevier Science BV, Amsterdam, 2007).

5. J. J. Camacho, M. Santos, L. Diaz, L. J. Juan, and J. M. L. Poyato, Appl. Phys. A 99, 159 (2010).

6. N. Kawahara, J. L. Beduneau, T. Nakayama, E. Tomita, and Y. Ikeda, Appl. Phys. B 86, 605 (2007).

7. Z. X. Lin, J. Q. Wu, F. L. Sun, and S. S. Gong, Appl. Opt. 49, C80 (2010).

8. J. Das, and M. Yamaguchi, Opt. Express 18, 7038 (2010).

9. J. M. Dai, X. Xie, and X. C. Zhang, Phys. Rev. Lett. 97, 103903 (2006).

10. X. Xie, J. M. Dai, and X. C. Zhang, Phys. Rev. Lett. 96, 075005 (2006).

11. M. Sabsabi and P. Cielo, Appl. Spectrosc. 49, 499 (1995).

12. R. E. Russo, X. L. Mao, H. Liu, J. Gonzalez, and S. S. Mao, Talanta 57, 425 (2002).

13. Z. X. Lin, J. Q. Wu, F. L. Sun, and S. S. Gong, Appl. Opt. 49, C80 (2010).

14. Ralchenko, Yu., Kramida, A. E., Reader, J., and NIDT ASD Team (2010), "NIST Atomic Spectra Database (cersion 4.0)", http://physics.nist.gov/PhysRefData/ASD/index.html.

15. H. C. Liu, X. L. Mao, J. H. Yoo, and R. E. Russo, Spectrochim. Spectrochim. Acta B 54, 1607 (1999).

16. A. M. El Sherbini, H. Hegazy, and Th. M. El Sherbini, Spectrochim. Acta B 61, 532 (2006).

17. P. Kepple and H. R. Griem, Phys. Rev. 173, 317 (1968).

18. G. Abdellatif and H. Imam, Spectrochim. Acta B 57, 1155 (2002).

Save this article's abstract as
Copyright©2014 Chinese Optics Letters 沪ICP备05015387