2018-07-24 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 06 , Vol. 09 , 2011    10.3788/COL201109.060102

Direct inversion of shallow-water bathymetry from EO-1 hyperspectral remote sensing data
Zhishen Liu, Yan Zhou
Ocean Remote Sensing Institute, [Ocean University of China], Qingdao 266003, China

Chin. Opt. Lett., 2011, 09(06): pp.060102

Topic:Atmospheric and oceanic optics
Keywords(OCIS Code): 010.0280  280.1355  

Using the US National Aeronautics and space Administration (NASA) Earth Observing-1 Mission (EO-1) hyperion hyperspectral remote sensing data, we study the shallow-water bathymetry inversion in Smith Island Bay. The fast line-of-sight atmospheric analysis of spectral hypercubes module is applied for atmo-spheric correction, and principal component analysis method combined with scatter diagram and maximum likelihood classification is used for seabed classification. The diffuse attenuation coefficient Kd is derived using quasi-analytical algorithm (QAA), which performs well in optically deep water. Kd obtained from QAA requires correction, particularly those derived in some coastal areas with optically shallow water and calculated by direct inversion based on radiative transfer theory to obtain the bathymetry. The direct inversion method derives the water depth quickly, and matches the results from optimized algorithm.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (417 KB)


Posted online:2011/5/12

Get Citation: Zhishen Liu, Yan Zhou, "Direct inversion of shallow-water bathymetry from EO-1 hyperspectral remote sensing data," Chin. Opt. Lett. 09(06), 060102(2011)



1. F. C. Polcyn and D. R. Lyzenga, in Proceedings of Symposium of Signif icant Results from ERTS-1 1433 (1973).

2. M. K. Hamilton, C. O. Davis, W. J. Rhea, S. H. Pilorz, J. M. Paredes, and K. L. Carder, Remote Sens. Environ. 44, 217 (1993).

3. J. C. Sandidge and R. J. Holyer, Remote Sens. Environ. 65, 341 (1998).

4. Z. Lee, K. L. Carder, R. F. Chen, and T. G. Peacock, J. Geophys. Res. 106, 11639 (2001).

5. T. Cui, J. Zhang, J. Tang, Y. Ma, and S. Qing, Chin. Opt. Lett. 8, 721 (2010).

6. Z. P. Lee, B. Casey, R. Arnone, A. Weidemann, R. Parsons, M. J. Montes, B.-C. Gao, W. Goode, C. O. Davis, and J. Dye, J. Appl. Remote Sensing 1, 011502 (2007).

7. D. L. B. Jupp and B. Datt, "Evaluation of the EO-1 hyperion hyperspectral instrument and its applications at Australian validation sites 2001-2003" CSIRO Earth Observation Centre Report (June, 2004).

8. Research Systems, Inc., FLAASH Module User’s Guide (Version 4.2) (August, 2005).

9. X. Jiang, J. Lu, and W. Shen, Acta Opt. Sin. (in Chinese) 29, (s1) 111 (2009).

10. X. Jiang, L. Dai, and W. Shen, Acta Opt. Sin. (in Chinese) 29, (s1) 115 (2009).

11. M. Gianinetto and G. Lechi, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 35, (Part B) 94 (2004).

12. P. N. Bierwirth, T. J. Lee, and R. V. Burne, Photogramm. Eng. Remote Sensing 59, 331 (1993).

13. W. Philpot, C. O. Davis, W. P. Bissett, C. D. Mobley, D. D. R. Kohler, Z. Lee, J. Bowles, R. G . Steward, Y. Agrawal, J. Trowbridge, R. W. Gould, Jr., and R. A. Arnone, Oceanography 17, 77 (2004).

14. Z.-P. Lee, K.-P. Du, and R. Arnone, J. Geophys. Res. 110, C02016 (2005).

15. Z. P. Lee, K. L. Carder, and R. Arnone, Appl. Opt. 41, 5755 (2002).

16. Z. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, and J. S. Patch, Appl. Opt. 38, 3831 (1999).

Save this article's abstract as
Copyright©2018 Chinese Optics Letters 沪ICP备05015387