2018-11-16 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 04 , Vol. 09 , 2011    10.3788/COL201109.041601

Stacking-faults-free zinc blende GaAs/AlGaAs axial heterostructure nanowires during vapor-liquid-solid growth
Jingwei Guo, Hui Huang, Xiaomin Ren, Xin Yan, Shiwei Cai, Yongqing Huang, Qi Wang, Xia Zhang, Wei Wang
Key Laboratory of Information Photonics and Optical Communications, Ministry of Education, [Beijing University of Posts and Telecommunications], Beijing 100876, China

Chin. Opt. Lett., 2011, 09(04): pp.041601

Keywords(OCIS Code): 160.4236  310.3840  

Pure zinc blende structure GaAs/AlGaAs axial heterostructure nanowires (NWs) are grown by metal organic chemical vapor deposition on GaAs(111) B substrates using Au-catalyzed vapor-liquid-solid mechanism. Al adatom enhances the influence of diameters on NWs growth rate. NWs are grown mainly through the contributions from the direct impingement of the precursors onto the alloy droplets and not so much from adatom diffusion. The results indicate that the droplet acts as a catalyst rather than an adatom collector.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (2006 KB)


Posted online:2011/3/15

Get Citation: Jingwei Guo, Hui Huang, Xiaomin Ren, Xin Yan, Shiwei Cai, Yongqing Huang, Qi Wang, Xia Zhang, Wei Wang, "Stacking-faults-free zinc blende GaAs/AlGaAs axial heterostructure nanowires during vapor-liquid-solid growth," Chin. Opt. Lett. 09(04), 041601(2011)

Note: This work was supported by the National Basic Research Program of China (No. 2010CB327600), the National High Technology R&D Program of China (No. 2009AA03Z417), the National Natural Science Foundation of China (No. 61020106007), the Program for New Century Excellent Talents in University of Ministry of Education of China (NCET-08-0736), the Chinese Universities' Scientific Fund (BUPT2009RC0409, BUPT2009RC0410), and the 111 Program of China (No. B07005).


1. F. Patolsky, B. P. Timko, G. Yu, Y. Fang, A. B. Greytak, G. Zheng, and C. M. Lieber, Science 313, 1100 (2006).

2. T. Bryllert, L.-E. Wernersson, L. E. Froberg, and L. Samuelson, IEEE Electron Device Lett. 27, 323 (2006).

3. R. S. Wagner and W. C. Ellis, Appl. Phys. Lett. 4, 89 (1964).

4. H. Huang, X. Ren, X. Ye, J. Guo, Q. Wang, Y. Yang, S. Cai, and Y. Huang, Nano Lett. 10, 64 (2010).

5. Y. Yao, T. Ochiai, T. Mano, T. Kuroda, T. Noda, N. Koguchi, and K. Sakoda, Chin. Opt. Lett. 7, 882 (2009).

6. X. Mi, D. Li, F. Meng, and H. Zhao, Chin. Opt. Lett. 7, 335 (2009).

7. C. Chen, N. Braidy, C. Couteau, C. Fradin, G. Weihs, and R. LaPierre, Nano Lett. 8, 495 (2008).

8. Z. H. Wu, M. Sun, X. Y. Mei, and H. E. Ruda, Appl. Phys. Lett. 85, 657 (2004).

9. M. J. Tambe, S. K. Lim, M. J. Smith, L. F. Allard, and S. Gradecak, Appl. Phys. Lett. 93, 151917 (2008).

10. K. Tateno, H. Gotoh, and Y. Watanabe, Appl. Phys. Lett. 85, 1808 (2004).

11. L. Ouattara, A. Mikkelsen, N. Skold, J. Eriksson, T. Knaapen, E. Cavar, W. Seifert, L. Samuelson, and E. Lundgren, Nano Lett. 7, 2859 (2007).

12. J. Noborisaka, J. Motohisa, S. Hara, and T. Fukui, Appl. Phys. Lett. 87, 093109 (2005).

13. K. Tomioka, Y. Kobayashi, J. Motohisa, S. Hara, and T. Fukui, Nanotechnology 20, 145302 (2009).

14. X. Ye, H. Huang, X.-M. Ren, Y.-S. Yang, J.-W. Guo, Y.-Q. Huang, and Q. Wang, Chin. Phys. Lett. 27, 046101 (2010).

15. V. G. Dubrovskii and N. V. Sibirev, Phys. Rev. E 70, 031604 (2004).

16. M. Moewe, L. C. Chuang, S. Crankshaw, C. Chase, and C. Chang-Hasnain, Appl. Phys. Lett. 93, 023116 (2008).

17. B. A. Wacaser, K. Deppert, L. S. Karlsson, L. Samuelson, and W. Seifert, J. Cryst. Growth 287, 504 (2006).

18. R. Magri, M. Rosini, and F. Casetta, Phys. Stat. Sol. C 7, 374 (2010).

19. C. Soci, X.-Y. Bao, D. P. R. Aplin, and D. Wang, Nano Lett. 8, 4275 (2008).

20. M. C. Plante and R. R. LaPierre, J. Cryst. Growth 310, 356 (2008).

21. V. G. Dubrovskii, N. V. Sibirev, G. E. Cirlin, I. P. Soshnikov, W. H. Chen, R. Larde, E. Cadel, P. Pareige, T. Xu, B. Grandidier, J.-P. Nys, D. Stievenard, M. Moewe, L. C. Chuang, and C. Chang-Hasnain, Phys. Rev. B 79, 205316 (2009).

22. V. G. Dubrovskii, N. V. Sibirev, G. E. Cirlin, M. Tchernycheva, J. C. Harmand, and V. M. Ustinov, Phys. Rev. E 77, 031606 (2008).

23. J. C. Harmand, G. Patriarche, N. P′er′e-Laperne, M-N. M′erat-Combe, L. Travers, and F. Glas, Appl. Phys. Lett. 87, 203101 (2005).

24. A. I. Persson, B. J. Ohlsson, S. Jeppesen, and L. Samuelson, J. Cryst. Growth 272, 167 (2004).

25. H. J. Joyce, Q. Gao, H. H. Tan, C. Jagadish, Y. Kim, X. Zhang, Y. Guo, and J. Zou, Nano Lett. 7, 921 (2007).

26. J. Bauer, V. Gottschalch, H. Paetzelt, G. Wagner, B. Fuhrmann, and H. S. Leipner, J. Cryst. Growth 298, 625 (2007).

27. F. Glas, J.-C. Harmand, and G. Patriarche, Phys. Rev. Lett. 99, 146101 (2007).

Save this article's abstract as
Copyright©2018 Chinese Optics Letters 沪ICP备15018463号-7 公安备案沪公网安备 31011402005522号