2018-12-12 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 09 , Vol. 08 , 2010    10.3788/COL20100809.0918


All-optical functions based on semiconductor ring lasers (Invited Paper)
Siyuan Yu1;2
1 Department of Electronic and Electrical Engineering, [University of Bristol], Bristol, BS8 1UB, UK
2 Visiting State Key Laboratory of ASIC and Department of Communications Engineering, School of Information Science and Engineering, [Fudan University], Shanghai 200433, China

Chin. Opt. Lett., 2010, 08(09): pp.918-923-6

DOI:10.3788/COL20100809.0918
Topic:Integrated optics
Keywords(OCIS Code): 130.3750  140.3560  140.5960  130.4815  130.3120  

Abstract
Semiconductor ring laser (SRL) has been shown to possess robust bistability between its two possible directions, i.e., clockwise (cw) and counter-clockwise (ccw) lasing, routinely demonstrating directional extinction ratio (DER) of > 25 dB. In this paper, experimental schemes and results using the SRL as a universal photonic digital element to form all-optical logic, memory, and signal processing circuits are summarized. It is demonstrated that the SRL can be used for both combinatorial and sequential logic functions, and as all-optical regeneration devices. Furthermore, it is shown that a SRL logic circuit can be all-optically reconfigured to perform different all-optical logic functions.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (0 KB)

Share:


Received:2010/6/8
Accepted:1949/10/1
Posted online:1949/10/1

Get Citation: Siyuan Yu, "All-optical functions based on semiconductor ring lasers (Invited Paper)," Chin. Opt. Lett. 08(09), 918-923-6(2010)

Note:



References

1. D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, Science 286, 5444 (1999).

2. C. Ito and J. C. Cartledge, IEEE Photon. Technol. Lett. 20, 425 (2008).

3. M. Eiselt, W. Pieper, and H. G. Weber, J. Lightwave Technol. 13, 2099 (1995).

4. M. Jinno, J. Lightwave Technol. 12, 1648 (1994).

5. O. R. Leclerc, B. Lavigne, E. Balmefrezol, P. Brindel, L. Pierre, D. Rouvillain, and F. Seguineau, J. Lightwave Technol. 21, 2779 (2003).

6. N. S. Patel, K. L. Hall, and K. A. Rauschenbach, Appl. Opt. 37, 2831 (1998).

7. S. J. Savage, B. S. Robinson, E. P. Ippen, and S. A. Hamilton, Opt. Express 14, 1748 (2006).

8. A. E. Kelly, I. D. Phillips, R. J. Manning, A. D. Ellis, D. Nesset, D. G. Moodie, and R. Kashyap, Electron. Lett. 35, 1477 (1999).

9. S. Fischer, M. D¨ulk, E. Gamper, W. Vogt, E. Gini, H. Melchior, W. Hunziker, D. Nesset, and A. D. Ellis, Electron. Lett. 35, 2047 (1999).

10. D. Wolfson, A. Kloch, T. Fjelde, C. Janz, B. Dagens, and M. Renaud, IEEE Photon. Technol. Lett. 12, 332(2000).

11. R. Sato, T. Ito, Y. Shibata, A. Ohki, and Y. Akatsu, IEEE Photon. Technol. Lett. 17, 2194 (2005).

12. P. Petropoulos, M. Ibsen, A. D. Ellis, and D. J. Richardson, J. Lightwave Technol. 19, 746 (2001).

13. F. Parmigiani, P. Petropoulos, M. Ibsen, and D. J. Richardson, IEEE Photon. Technol. Lett. 18, 829(2006).

14. F. Parmigiani, P. Petropoulos, M. Ibsen, and D. J. Richardson, J. Lightwave Technol. 24, 357 (2006).

15. M. J. O’Mahony, C. Politi, D. Klonidis, R. Nejabati, and D. Simeonidou, J. Lightwave Technol. 24, 4684 (2006).

16. S. J. B. Yoo, J. Lightwave Technol. 24, 4468 (2006).

17. S. Zimmerman, A. Wixforth, J. P. Kotthaus, W. Wegscheider, and M. A. Bichler, Science 283, 1292(1999).

18. S. Furst and M. Sorel, IEEE Photon. Technol. Lett. 20, 366 (2008).

19. M. Sorel, P. J. R. Laybourn, G. Giuliani, and S. Donati, Appl. Phys. Lett. 80, 3051 (2002).

20. G. Mezosi, M. J. Strain, S. Furst, Z. Wang, S. Yu, and M. Sorel, IEEE Photon. Technol. Lett. 21, 88 (2009).

21. I. Stamataki, A. Kapsalis, S. Mikroulis, D. Syvridis, M. Hamacher, U. Troppenz, and H. Heidrich, Opt. Commun. 282, 2388 (2009).

22. M. Sorel, G. Giuliani, A. Scire, R. Miglierina, S. Donati, and P. J. R. Laybourn, IEEE J. Quantum Electron. 39, 1187 (2003).

23. W. E. Lamb, Phys. Rev. 134, A1429 (1964).

24. C. Born, M. Sorel, and S. Yu, IEEE J. Quantum Electron. 41, 261 (2005).

25. C. Born, G. Yuan, Z. Wang, and S. Yu, IEEE J. Quantum Electron. 44, 1055 (2008).

26. C. J. Born, G. Yuan, Z. Wang, M. Sorel, and S. Yu, IEEE J. Quantum Electron. 44, (2008).

27. C. J. Born, M. Sorel, P. J. R. Laybourn, and S. Yu, in Proceedings of Combined Laser and Electro-Optics Conference (CLEO) 2003 1275 (2003).

28. G. Giuliani, S. Yu, Z, Wang, G. Yuan, B. Li, I. M. Memon, S. Furst, and M. Sorel, in Proceedings of European Conference on Optical Communication (ECOC) 2007 P046 (2007).

29. B. Li, M. I. Memon, G. Mezosi, G. Yuan, Z. Wang, M. Sorel, and S. Yu, IEEE Photon. Technol. Lett. 20, 770(2008).

30. G. Yuan, Z. Wang, B. Li, M. I. Memon, and S. Yu, IEEE J. Sel. Top. Quantum Electron. 14, 903 (2008).

31. B. Li, M. I. Memon, G. Mezosi, Z. Wang, M. Sorel, and S. Yu, J. Lightwave Technol. 27, 4233 (2009).

32. M. Hill, H. J. S. Dorren, X. J. M. Leijtens, J. H. den Besten, T. de Vries, J. H. C. van Zantvoort, E. Smalbrugge, Y. S. Oei, J. J. M. Binsma, G. D. Khoe, and M. K. Smit, Opt. Lett. 30, 1710 (2005).

33. M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. Den Besten, B. Smalbrugge, Y.-S. Oei, H. Binsma, G.-D. Khoe, and M. K. Smit, Nature 432, 206 (2004).

34. B. Li, M. I. Memon, G. Mezosi, Z. Wang, M. Sorel, and S. Yu, in Proceedings of International Conference on Photonics in Switching 2009 (2009).


Save this article's abstract as
Copyright©2018 Chinese Optics Letters 沪ICP备15018463号-7 公安备案沪公网安备 31011402005522号