2018-08-15 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 08 , Vol. 07 , 2009    10.3788/COL20090708.0741

Optical properties of 1.3-\mum InAs/GaAs quantum dots grown by metal organic chemical vapor deposition
Lin Li, Guojun Liu, Zhanguo Li, Mei Li, Xiaohua Wang, Yi Qu, Baoxue Bo
National Key Lab of High Power Semiconductor Lasers, [Changchun University of Science and Technology], Changchun 130022, China

Chin. Opt. Lett., 2009, 07(08): pp.741-743-3

Topic:Thin films
Keywords(OCIS Code): 310.1860  250.5230  310.3840  

The optical properties of self-assembled InAs quantum dots (QDs) on GaAs substrate grown by metal-organic chemical vapor deposition (MOCVD) are reported. Photoluminescence (PL) measurements prove the good optical quality of InAs QDs, which are achieved using lower growth temperature and higher InAs coverage. At room temperature, the ground state peak wavelength of PL spectrum and full-width at half-maximum (FWHM) are 1305 nm and 30 meV, respectively, which are obtained as the QDs are finally capped with 5-nm In0.06Ga0.94As strain-reducing layer (SRL). The PL spectra exhibit two emission peaks at 1305 and 1198 nm, which correspond to the ground state (GS) and the excited state (ES) of the QDs, respectively.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (464 KB)


Posted online:

Get Citation: Lin Li, Guojun Liu, Zhanguo Li, Mei Li, Xiaohua Wang, Yi Qu, Baoxue Bo, "Optical properties of 1.3-\mum InAs/GaAs quantum dots grown by metal organic chemical vapor deposition," Chin. Opt. Lett. 07(08), 741-743-3(2009)



1. D. L. Huffaker, G. Park, Z. Zou, O. B. Shchekin, and D. G. Deppe, Appl. Phys. Lett. 73, 2564 (1998).

2. A. Salhi, L. Martiradonna, L. Fortunato, V. Tasco, G. Visimberga, R. Cingolani, A. Passaseo, and M. De Vittorio, Phys. Stat. Sol. (c) 3, 4027 (2006).

3. T. J. Badcock, R. J. Royce, D. J. Mowbray, M. S. Skolnick, H. Y. Liu, M. Hopkinson, K. M. Groom, and Q. Jiang, Appl. Phys. Lett. 90, 111102 (2007).

4. P. B. Joyce, T. J. Krzyzewski, G. R. Bell, T. S. Jones, S. Malik, D. Childs, and R. Murray, Phys. Rev. B 62, 10891 (2000).

5. H. Heidemeyer, S. Kiravittaya, C. Müler, N. Y. Jin-Phillipp, and O. G. Schmidt, Appl. Phys. Lett. 80, 1544 (2002).

6. K. Nishi, H. Saito, S. Sugou, and J.-S. Lee, Appl. Phys. Lett. 74, 1111 (1999).

7. T. Amano, T. Sugaya, and K. Komori, Jpn. J. Appl. Phys. 44, L432 (2005).

8. Q. Han, Z. Niu, H. Ni, S. Zhang, X. Yang, Y. Du, C. Tong, H. Zhao, Y. Xu, H. Peng, and R. Wu, Chin. Opt. Lett. 4, 413 (2006).

9. L. Chu, M. Arzberger, G. Bom, and G. Abstreiter, J. Appl. Phys. 85, 2355 (1999).

10. A. Passaseo, V. Tasco, M. De Giorgi, M. T. Todaro, M. De Vittorio, and R. Cingolani, Appl. Phys. Lett. 84, 1868 (2004).

11. L. Li, G. Liu, Z. Li, M. Li, and X. Wang, Chin. Opt. Lett. 6, 71 (2008).

12. T. Yang, J. Tatebayashi, S. Tsukamoto, M. Nishioka, and Y. Arakawa, Appl. Phys. Lett. 84, 2817 (2004).

13. A. A. El-Emawy, S. Birudavolu, P. S. Wong, Y.-B. Jiang, H. Xu, S. Huang, and D. L. Huffaker, J. Appl. Phys. 93, 3529 (2003).

14. Y. Nakata, K. Mukai, M. Sugawara, K. Ohtsubo, H. Ishikawa, and N. Yokoyama, J. Cryst. Growth 208, 93 (2000).

15. T. Zhu, Y. Zhang, B. Xu, F. Liu, and Z. Wang, Acta Phys. Sin. (in Chinese) 52, 2087 (2003).

16. S. Sanguinetti, M. Henini, M. G. Alessi, M. Capizzi, P. Frigeri, and S. Franchi, Phys. Rev. B 60, 8276 (1999).

17. D. I. Lubyshev, P. P. González-Borrero, E. Marega, Jr., E. Petitprez, N. La Scala, Jr., and P. Basmaji, Appl. Phys. Lett. 68, 205 (1996).

18. C. Lobo, R. Leon, S. Marcinkevicus, W. Yang, P. C. Sercel, X. Z. Liao, J. Zou, and D. J. H. Cockayne, Phys. Rev. B 60, 16647 (1999).

19. T. Amano, T. Sugaya, S. Yamauchi, and K. Komori, J. Cryst. Growth 295, 162 (2006).

Save this article's abstract as
Copyright©2018 Chinese Optics Letters 沪ICP备05015387