2018-10-22 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 08 , Vol. 07 , 2009    10.3788/COL20090708.0699


Frequency locking, quasiperiodicity, and chaos in dual-frequency loss-modulated erbium-doped fiber lasers
Yue Liu, Wei Zhang, Xue Feng, Xiaoming Liu
Department of Electronic Engineering, [Tsinghua University], Beijing 100084, China

Chin. Opt. Lett., 2009, 07(08): pp.699-702-4

DOI:10.3788/COL20090708.0699
Topic:Lasers and laser optics
Keywords(OCIS Code): 140.1540  140.3500  

Abstract
Dynamic behaviors of the erbium-doped fiber laser (EDFL) with dual-frequency loss modulation are experimentally investigated. Frequency-locked states with their winding numbers which form the devil's staircase are observed in this kind of lasers. In the unlocked regions, the output state changes from quasiperiodicity to chaos under increasing modulation index, which demonstrates a different route to chaos from the conventional loss-modulated EDFLs with a single modulation frequency. The chaos output in the dual-frequency loss-modulated EDFLs shows less harmonic components of the modulation frequency in the corresponding power spectrum, indicating the improvement of the randomness of the chaotic signals.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (815 KB)

Share:


Received:2008/10/30
Accepted:
Posted online:

Get Citation: Yue Liu, Wei Zhang, Xue Feng, Xiaoming Liu, "Frequency locking, quasiperiodicity, and chaos in dual-frequency loss-modulated erbium-doped fiber lasers," Chin. Opt. Lett. 07(08), 699-702-4(2009)

Note:



References

1. L. Luo and P. Chu, J. Opt. Soc. Am. B 15, 2524 (1998).

2. L. Yang, W. Pan, B. Luo, W. Zhang, N. Jiang, Z. Zhou, and G. Yang, Chinese J. Lasers (in Chinese) 35, 992 (2008).

3. S. Yan, Z. Chi, and W. Chen, Acta Opt. Sin. (in Chinese) 24, 29 (2004).

4. F. Sanchez, M. LeFlohic, G. M. Stephan, P. LeBoudec, and P.-L. Francois, IEEE J. Quantum Electron. 31, 481 (1995).

5. F. Sanchez and G. Stéphan, Phys. Rev. E 53, 2110 (1996).

6. P. Besnard, F. Ginovart, P. Le Boudec, F. Sanchez, and G. M. Stéphan, Opt. Commun. 205, 187 (2002).

7. J. Zhang, G. Li, and Z. Zhang, Chinese J. Lasers (in Chinese) 21, 540 (1994).

8. J. M. Saucedo-Solorio, A. N. Pisarchik, A. V. Kir'yanov, and V. Aboites, J. Opt. Soc. Am. B 20, 490 (2003).

9. S. Kim, B. Lee, and D. Kim, IEEE Photon. Technol. Lett. 13, 290 (2001).

10. J. Maran, P. Besnard, and S. LaRochelle, J. Opt. Soc. Am. B 23, 1302 (2006).

11. P. Bak, Phys. Today 39, 38 (1986).

12. D. He, W. J. Yeh, and Y. H. Kao, Phys. Rev. B 30, 172 (1984).

13. D. Baums, W. Elsasser, and E. O. Gobel, Phys. Rev. Lett. 63, 155 (1989).

14. H. Winful, Y. Chen, J. Liu, Appl. Phys. Lett. 48, 616 (1986).

15. L. Luo, T. J. Tee, and P. L. Chu, J. Opt. Soc. Am. B 15, 972 (1998).

16. A. N. Pisarchik and Y. O. Barmenkov, Opt. Commun. 254, 128 (2005).

17. A. N. Pisarchik, A. V. Kir'yanov, Y. O. Barmenkov, and R. Jaimes-Reátegui, J. Opt. Soc. Am. B 22, 2107 (2005).


Save this article's abstract as
Copyright©2018 Chinese Optics Letters 沪ICP备05015387