2018-06-23 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 08 , Vol. 07 , 2009    10.3788/COL20090708.0675

Dual-wavelength FBG inscribed by femtosecond laser for simultaneous measurement of high temperature and strain
Yong Zhu1, Hao Mei1, Tao Zhu1, Jie Zhang1, Shizhuo Yin2
1 Key Laboratory for Optoelectronic Technology &
System, Ministry of Education of China, College of Optoelectronic Engineering, [Chongqing University], Chongqing 400030, China
2 Department of Electrical Engineering, [The Pennsylvania State University, University Park], PA 16802, USA

Chin. Opt. Lett., 2009, 07(08): pp.675-678-4

Topic:Fiber optics and optical communications
Keywords(OCIS Code): 060.2370  140.7090  050.2770  

A novel fiber Bragg grating (FBG) with two transmission dips in 1310- and 1550-nm regions is proposed and inscribed by an infrared femtosecond laser. Formed by multi-photon ionization, this type of grating can withstand temperature as high as 800 degrees which makes it suitable for harsh environment sensing. In addition, the temperature and strain affect these two dips in different ways, which enables simultaneous strain and temperature sensing. The fabrication, spectrum characterization, and temperature performance of this grating are introduced.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (1538 KB)


Posted online:

Get Citation: Yong Zhu, Hao Mei, Tao Zhu, Jie Zhang, Shizhuo Yin, "Dual-wavelength FBG inscribed by femtosecond laser for simultaneous measurement of high temperature and strain," Chin. Opt. Lett. 07(08), 675-678-4(2009)

Note: This work was supported by the National Natural Science Foundation of China (No. 60707010) and the Natural Science Foundation of Chongqing (CSTC, 2007BB3125).


1. F. K. Chang, (ed.) Structural Health Monitoring 2000 (Technomic Publishing, Lancaster, 1999).

2. G. P. Brady, K. Kalli, D. J. Webb, D. A. Jackson, L. Reelie, and J. L. Archambault, IEE Proc. Optoelectron. 144, 156 (1997).

3. M. G. Xu, J.-L. Archambault, L. Reekie, and J. P. Dakin, Electron. Lett. 30, 1085 (1994).

4. H. J. Patrick, G. M. Williams, A. D. Kersey, J. R. Pedrazzani, and A. M. Vengsarkar, IEEE Photon. Technol. Lett. 8, 1223 (1996).

5. S. W. James, M. L. Dockney, and R. P. Tatam, Electron. Lett. 32, 1133 (1996).

6. B.-O. Guan, H.-Y. Tam, X.-M. Tao, and X.-Y. Dong, IEEE Photon. Technol. Lett. 12, 675 (2000).

7. J. Zhang, C. Yu, K. Wang, and J. Zeng, Acta Opt. Sin. (in Chinese) 28, 779 (2008).

8. W.-C. Du, X.-M. Tao, and H.-Y. Tam, IEEE Photon. Technol. Lett. 11, 105 (1999).

9. X. Liao, Y. Rao, Z. Ran, and H. Deng, Chinese J. Lasers (in Chinese) 35, 884 (2008).

10. P. M. Cavaleiro, F. M. Araújo, L. A. Ferreira, J. L. Santos, and F. Farahi, IEEE Photon. Technol. Lett. 11, 1635 (1999).

11. C. W. Smelser, S. J. Mihailov, and D. Grobnic, Opt. Express 13, 5377 (2005).

12. Z. Yong, C. Zhan, J. Lee, S. Yin, and P. Ruffin, Opt. Lett. 31, 1794 (2006).

13. C. Zhan, J. Lee, S. Yin, P. Ruffin, and J. Grant, J. Appl. Phys. 101, 053110 (2007).

14. C. W. Smelser, S. J. Mihailov, D. Grobnic, P. Lu, R. B. Walker, H. Ding, and X. Dai, Opt. Lett. 29, 1458 (2004).

15. M. Born and E. Wolf, Principles of Optics (7th edn.) (Cambridge University Press, Cambridge, 1999).

16. A. V. Oppenheim, A. S. Willsky, and S. H. Nawab, Signal and Systems (2nd edn.) (Prentice Hall, Englewood Cliffs, 1997).

Save this article's abstract as
Copyright©2014 Chinese Optics Letters 沪ICP备05015387