2018-12-17 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 10 , Vol. 05 , 2007    Subwavelength-diameter silica wire for light in-coupling to silicon-based waveguide

Subwavelength-diameter silica wire for light in-coupling to silicon-based waveguide
Ziyang Zhang1, Min Qiu1, Ulf Andersson2, Limin Tong3
1Department of Microelectronics and Applied Physics, [Royal Institute of Technology] (KTH), Electrum 229, 164 40 Kista, Sweden

2Center for Parallel Computers, [Royal Institute of Technology] (KTH), 100 44 Stockholm, Sweden

3Department of Optical Engineering, [Zhejiang University], Hangzhou 310027

Chin. Opt. Lett., 2007, 05(10): pp.577-579-3

Topic:Integrated optics
Keywords(OCIS Code): 130.3120  250.5300  230.3990  

Coupling between subwavelength-diameter silica wires and silicon-based waveguides is studied using the parallel three-dimensional (3D) finite-different time-domain method. Conventional butt-coupling to a silica-substrated silicon wire waveguide gives above 40% transmission at the wavelength range from 1300 to 1750 nm with good robustness against axial misalignments. Slow light can be generated by counter-directional coupling between a silica wire and a two-dimensional (2D) silicon photonic crystal slab waveguide. Through dispersion-band engineering, 82% transmission is achieved over a coupling distance of 50 lattice constants. The group velocity is estimated as 1/35 of the light speed in vacuum.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (228 KB)


Posted online:

Get Citation: Ziyang Zhang, Min Qiu, Ulf Andersson, Limin Tong, "Subwavelength-diameter silica wire for light in-coupling to silicon-based waveguide," Chin. Opt. Lett. 05(10), 577-579-3(2007)

Note: This work was supported by the Swedish Foundation for Strategic Research (SSF) through the INGVAR Program, the SSF Strategic Research Center in Photonics, and the Swedish Research Council (VR). M. Qiu is the author to whom the correspondence should be addressed, his e-mail address is min@kth.se.


1. V. R. Almeida, R. R. Panepucci, and M. Lipson, Opt. Lett. 28, 1302 (2003).

2. D. Taillaert, P. Bienstman, and R. Baets, Opt. Lett. 29, 2749 (2004).

3. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, Nature 426, 816 (2003).

4. E-field AB, http://www.efieldsolutions.com/.

5. C. H. Bulmer and M. G. F. Wilson, J. Opt. Soc. Am. 66, 291 (1976).

6. A. T. Andreev and K. P. Panajotov, J. Lightwave Technol. 11, 1985 (1993).

7. A. Yariv, Optical Electronics in Modern Communications (5th edn.) (Oxford University Press, New York, 1997) Chap.13.

8. H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. Van Hulst, T. F. Krauss, and L. Kuipers, Phys. Rev. Lett. 94, 073903 (2005).

9. P. Pottier, M. Gnan, and R. M. De La Rue, Opt. Express 15, 6569 (2007).

10. W. Kuang, C. Kim, A. Stapleton, and J. D. O'Brien, Opt. Lett. 27, 1604 (2002).

11. P. E. Barclay, K. Srinivasan, and O. Painter, J. Opt. Soc. Am. B 20, 2274 (2003).

Save this article's abstract as
Copyright©2018 Chinese Optics Letters 沪ICP备15018463号-7 公安备案沪公网安备 31011402005522号