2018-06-23 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 09 , Vol. 05 , 2007    Experiment study of wavelength conversion in a dispersion-flattened photonic crystal fiber


Experiment study of wavelength conversion in a dispersion-flattened photonic crystal fiber
Qiuguo Wang, Bojun Yang, Lan Zhang, Hu Zhang, Li He
Key Laboratory of Optical Communication and Lightwave Technologies, Ministry of Education, School of Science, [Beijing University of Posts and Telecommunications], Beijing 100876

Chin. Opt. Lett., 2007, 05(09): pp.538-539-2

DOI:
Topic:Nonlinear optics
Keywords(OCIS Code): 190.2620  190.4380  060.0060  060.2330  

Abstract
Wavelength conversion based on four-wave mixing (FWM) has been demonstrated using a 40-m dispersion flattened highly nonlinear photonic crystal fiber (HNL-PCF). A conversion efficiency of -26 dB for a pump power of 19.5 dBm and a conversion bandwidth of 28 nm have been obtained, which are limited by the continuous wave (CW) laser wavelength range and tunability of optical band pass filters (OBPFs).

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (159 KB)

Share:


Received:2007/2/27
Accepted:
Posted online:

Get Citation: Qiuguo Wang, Bojun Yang, Lan Zhang, Hu Zhang, Li He, "Experiment study of wavelength conversion in a dispersion-flattened photonic crystal fiber," Chin. Opt. Lett. 05(09), 538-539-2(2007)

Note: This work was supported by the National Natural Science Foundation of China (No. 60678043) and Beijing Education Committee Common Build Foundation (No. XK100130637). Q. Wang's e-mail address is wangqiuguo0101@sina.com.



References

1. B.-E. Olsson, P. Ohlen, L. Rau, and D. J. Blumenthal, IEEE Photon. Technol. Lett. 12, 846 (2000).

2. O. Aso, S. Arai, T. Yagi, M. Tadakuma, Y. Suzuki, and S. Namiki, Electron. Lett. 36, 709 (2000).

3. K. Inoue and H. Toba, IEEE Photon. Technol. Lett. 4, 69 (1992).

4. T. A. Birks, J. C. Knight, and P. St. J. Russell, Opt. Lett. 22, 961 (1997).

5. R. Hainberger and S. Watanabe, IEEE Photon. Technol. Lett. 17, 70 (2005).

6. L. P. Shen, W.-P. Huang, G. X. Chen, and S. S. Jian, IEEE Photon. Technol. Lett. 15, 540 (2003).

7. K. O. Hill, D. C. Johnson, B. S. Kawasaki, and R. I. MacDonald, J. Appl. Phys. 49, 5098 (1978).

8. N. Shibata, R. P. Braun, and R. G. Waarts, IEEE J. Quantum Electron. 23, 1205 (1987).

9. B. Batagelj, in Proceedings of 2nd International Conference on Transparent Optical Networks 179 (2000).

10. K. Kihuclii and C. Lorattanasane, IEEE Photon. Technol. Lett. 6, 992 (1994).


Save this article's abstract as
Copyright©2014 Chinese Optics Letters 沪ICP备05015387