2018-08-16 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 11 , Vol. 03 , 2005    Determination of optimal source-detector separation in measuring chromophores in layered tissue with diffuse reflectance


Determination of optimal source-detector separation in measuring chromophores in layered tissue with diffuse reflectance
Yunhan Luo, Houxin Cui, Xiaoyu Gu, Rong Liu, Kexin Xu
State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072

Chin. Opt. Lett., 2005, 03(11): pp.659-659-

DOI:
Topic:Medical optics and biotechnology
Keywords(OCIS Code): 170.0170  300.0300  

Abstract
Based on analysis of the relation between mean penetration depth and source-detector separation in a three-layer model with the method of Monte-Carlo simulation, an optimal source-detector separation is derived from the mean penetration depth referring to monitoring the change of chromophores concentration of the sandwiched layer. In order to verify the separation, we perform Monte-Carlo simulations with varied absorption coefficient of the sandwiched layer. All these diffuse reflectances are used to construct a calibration model with the method of partial least square (PLS). High correlation coefficients and low root mean square error of prediction (RMSEP) at the optimal separation have confirmed correctness of the selection. This technique is expected to show light on noninvasive diagnosis of near-infrared spectroscopy.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (245 KB)

Share:


Received:2005/3/9
Accepted:
Posted online:

Get Citation: Yunhan Luo, Houxin Cui, Xiaoyu Gu, Rong Liu, Kexin Xu, "Determination of optimal source-detector separation in measuring chromophores in layered tissue with diffuse reflectance," Chin. Opt. Lett. 03(11), 659-659-(2005)

Note: This work was supported by the Tenth Five Years Plan of China (No. 2004BA706B12) and the Natural Science Key Foundation of Tianjin (No. 023800411). K. Xu is the author to whom the correspondence should be addressed, his e-mail address is kexin@tju.edu.cn.



References

1. T. R. Cheatle, L. A. Potter, M. Cope, D. T. Delpy, P. D. C. Smith, and J. H. Scurr, British J. Surg. 78, 405 (1991).

2. S. Fantini, M. A. Franceschini, J. B. Fishkin, B. Barbieri, and E. Gratton, Appl. Opt. 33, 5204 (1994).

3. I. Tachtsidis, C. E. Elwell, T. S. Leung, C.-W. Lee, M. Smith, and D. T. Delpy, Physiol. Meas. 25, 437 (2004).

4. R. Marbach, Th. Koschinsky, F. A. Gries, and H. M. Heise, Appl. Spectrosc. 47, 875 (1993).

5. S. U. A. Muller, B. Mertes, C. F. Fischbacher, K. U. Vagemann, and K. Danzer, Int. J. Artif. Organs 20, 285 (1997).

6. F. F. Jobsis, Science 198, 1264 (1977)).

7. S. Feng, F. Zeng, and B. Chance, Proc. SPIE 1888, 78 (1993).

8. M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, and D. T. Delpy, Phys. Med. Biol. 38, 1859 (1993).

9. W. Cui, C. Kumar, and B. Chance, Proc. SPIE 1431, 180 (1991).

10. A. Sassaroli, C. Blumetti, F. Martelli, L. Alianelli, D. Contini, A. Ismaelli, and G. Zaccanti, Appl. Opt. 37, 7392 (1998).

11. C. L. Tsai, Y. F. Yang, C. C. Han, J. H. Hsieh, and M. Chang, Appl. Opt. 40, 5770 (2001).

12. S. Del Bianco, F. Martelli, and G. Zaccanti, Phys. Med. Biol. 47, 4131 (2002).

13. L. H. Wang, S. L. Jacques, and L. Q. Zheng, Computer Methods and Programs in Biomedicine 47, 131 (1995).


Save this article's abstract as
Copyright©2018 Chinese Optics Letters 沪ICP备05015387