2017-11-22 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 03 , Vol. 01 , 2003    The characters of dense dispersion managed soliton in optical fiber transmission systems


The characters of dense dispersion managed soliton in optical fiber transmission systems
Shuqin Guo1;2, Guosheng Zhou1, Zhaoming Huang2
1Department of Physics, Shanxi University, Taiyuan 0300062School of Communication and Information Engineering, Shanghai University, Shanhai 200072

Chin. Opt. Lett., 2003, 01(03): pp.136-136-

DOI:
Topic:Image processing
Keywords(OCIS Code): 060.5530  060.2360  060.2330  

Abstract
The properties of ultra-short dense dispersion-managed soliton (DDMS) in optical fiber links are investigated. They show some excellent characters, such as, reducing pulse's breathing extent greatly, facing fewer mutual interactions and tolerating larger local dispersion. In general, DDMS is more stable than a conventional dispersion-managed soliton in high-capacity systems. Excessively dense dispersion compensation is more suitable for systems with weak nonlinear effect.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (0 KB)

Share:


Received:2002/9/1
Accepted:
Posted online:

Get Citation: Shuqin Guo, Guosheng Zhou, Zhaoming Huang, "The characters of dense dispersion managed soliton in optical fiber transmission systems," Chin. Opt. Lett. 01(03), 136-136-(2003)

Note: This work was partly supported by the Doctoral Research Fund of Shanxi University and the Youth Science Fund of Shanxi Province. S. Guo's e-mail address is sq.g@263.net.



References

1. J. M. Jacob and G. M. Carter, Electron. Lett. 33, 1128 (1997).

2. G. M. Carter, R. M. Mu, V. S. Grigoryan, C. R. Menyuk, P. Sinha, T. F. Carruthers, M. L. Dennis, and I. N. Duling III, Electron. Lett. 35, 233 (1999).

3. S. B. Alleston, P. Harper, I. S. Penketh, I. Bennion, N. J. Doran, and A. D. Ellis, Electron. Lett. 35, 823 (1999).

4. S. Wabnitz and F. Neddam, Opt. Commun. 183, 395 (2000).

5. C. K. Madsen, Opt. Lett. 25, 878 (2000).

6. A. H. Liang, H. Toda, and A. Hasegawa, Opt. Lett. 24, 799 (1999).

7. T. Hirooka, T. Nakada, and A. Hasegawa, IEEE Trans. Photon. Technol. Lett. 12, 633 (2000).

8. J. Chen, H. Kim, and Y. C. Chung, IEEE Photon. Technol. Lett. 13, 663 (2001).

9. J. N. Kutz and S. G. Evangelides, Opt. Lett. 23, 685 (1998).

10. A. Hodzic, B. Konrad, and K. Peternann, IEEE Photon. Technol. Lett. 14, 152 (2002).

11. R.-M. Mu and C. R. Menyuk, IEEE Photon. Technol. Lett. 13, 797 (2001).

12. G. P. Agrawal, Nonlinear Fiber Optics (the second edition) (Academic press, Inc., San Diego, 1995).


Save this article's abstract as
Copyright©2014 Chinese Optics Letters 沪ICP备05015387